期刊文献+

海流环境下多AUV多目标生物启发任务分配与路径规划算法 被引量:4

A novel algorithm of multi-AUVs task assignment and path planning based on biologically inspired neural network for ocean current environment
下载PDF
导出
摘要 针对多障碍物海流环境下多自治水下机器人(AUV)目标任务分配与路径规划问题,本文在栅格地图构建的基础上给出了一种基于生物启发神经网络(BINN)模型的新型自主任务分配与路径规划算法,并考虑海流对路径规划的影响.首先建立BINN模型,利用此模型表示AUV的工作环境,神经网络中的每一个神经元与栅格地图中的位置单元一一对应;接着,比较每个目标物在BINN地图中所有AUV的活性值,并选取活性值最大的AUV作为它的获胜AUV,实现多AUV任务分配;最后,考虑常值海流影响,根据矢量合成算法确定AUV实际的航行方向,实现AUV路径规划与安全避障.海流环境下仿真实验结果表明了生物启发模型在多AUV水下任务分配与路径规划中的有效性. Aiming at the multi-AUVs task assignment and path planning in the ocean current underwater environment with multi-obstacles, a novel autonomous task assignment and path planning algorithm is presented based on the biological inspired neural network model and grid map, and the impact of ocean current on path planning is considered. Firstly, the biologically inspired neural network model is established, and which is used to represent the working environment of the AUV. Each neuron in the neural network corresponds to the position unit in the grid map. Then, activity values of all AUVs of each target in the BINN map are compared, and the AUV with the largest active value is selected as its winning AUV for a certain target. The task assignment of multi-AUVs is realized. Finally, the actual direction of AUV navigation for ocean current environment is determined according to the vector synthesis algorithm. The simulation results show the effectiveness of the proposed multi-AUVs task assignment and path planning for the underwater environment with obstacles and ocean current.
作者 刘晨霞 朱大奇 周蓓 顾伟 LIU Chen-xia;ZHU Da-qi;ZHOU Bei;GU Wei(Shanghai Engineering Research Center of Intelligent Maritime Search&Rescue and Underwater Vehicles,Shanghai Maritime University,Shanghai,201306,China;School of Mechanical Engineering,University of Shanghai for Science and Technology,Shanghai,200093,China.)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2022年第11期2100-2107,共8页 Control Theory & Applications
基金 国家自然科学基金项目(62033009,U1706224) 上海市科技创新行动计划项目(20510712300)资助。
关键词 生物启发神经网络(BINN)模型 任务分配 路径规划 海流环境 安全避障 biologically inspired neural network(BINN) task assignment path planning ocean current environment obstacle avoidance
  • 相关文献

参考文献2

二级参考文献25

  • 1PAULL L, SAEEDI S, SETO M, et al. AUV navigation and local- ization: a review [J]. IEEE Journal of Oceanic Engineering, 2014, 39(1): 131 - 149.
  • 2KULKARNI I S, POMPILI D. Task allocation for networked au- tonomous underwater vehicles in critical missions [J]. IEEE Journal on Selected Areas in Communications, 2010, 28(5): 716 - 727.
  • 3JAILLET L, PORTA J M. Path planning under kinematic constraints by rapidly exploring manifolds [J]. IEEE Transactions on Robotics, 2013, 29(1): 105 - 117.
  • 4PETILLOAND S, SCHMIDT H. Exploiting adaptive and collabo- rative AUV autonomy for detection and characterization of internal waves [J]. IEEE Journal of Oceanic Engineering, 2014, 39(1): 150 - 164.
  • 5PETRES C, PAILHAS Y, PATRON P, et al. Path planning for au- tonomous underwater vehicles [J]. IEEE Transactions on Robotics, 2007, 23(2): 331 - 341.
  • 6OHARA K J, WALKER D B, BALCH T R. Physical path plan- ning using a pervasive embedded network [J]. IEEE Transactions on Robotics, 2008, 24(3): 741 - 746.
  • 7AKKIRAJU R, KESKINOCAK P, MURTHY S, et al. An agent- based approach for scheduling multiple machines [J]. Applied Intelli- gence, 2001, 14(2): 135 - 144.
  • 8TURNER R. Intelligent control of autonomous underwater vehicles: the orca project [C] //IEEE International Conference on Systems, Man and Cybernetics. Vancouver, BC: IEEE, 1995, 2:1717 - 1722.
  • 9KWOK K S, DRIESSEN B J, PHILLIPS C A. Analyzing the multiple-target-multiple-agent scenario using optimal assignment al- gorithms [J]. Journal of Intelligent and Robotic Systems, 2002, 35(1): 111 - 122.
  • 10SHEN W M, WILL P, GALSTYAN A. Hormone-inspired self- organization and distributed control of robotic swarms [J]. Au- tonomous Robots, 2004, 17(1): 93 - 105.

共引文献48

同被引文献68

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部