摘要
针对现有的基于深度学习的室内定位解决方案容易受到无线接入点AP攻击的问题,提出了基于卷积神经网络(CNN)的室内定位框架,构建了一种基于深度学习的Wi-Fi指纹室内安全定位系统(DS-LocCNN),使得多建筑和多楼层在面对恶意攻击时的定位精度得到了保证.通过在UJIIndoorLoc数据集上评估此系统,证明了所提出的DS-LocCNN能很好地抵御基于AP的恶意攻击,且在建筑级定位和楼层级定位上的成功率优于现有的解决方案.
Aiming at the problem that the existing indoor positioning solutions based on deep learning are vulnerable to AP(access point) attacks, a positioning framework based on convolutional neural networks(CNN) was proposed, and a deep learning-based Wi-Fi fingerprint indoor security positioning system(DS-LocCNN) was constructed,which enabled multi-building and multi-floor to face malicious attacks.The positioning accuracy during attack was guaranteed.By evaluating the system on the UJIIndoor Loc dataset, it is proved that the DS-LocCNN proposed can well resist AP-based malicious attacks, and its success rate is better than the current solutions in building-level localization and floor-level localization.
作者
程莉
朱会
马洪
元海文
CHENG Li;ZHU Hui;MA Hong;YUAN Haiwen(School of Electrical and Information Engineering,Wuhan Institute of Technology,Wuhan 430205,China;School of Electric Information and Communications,Huazhong University of Science and Technology,Wuhan 430074,China)
出处
《华中科技大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2023年第2期46-51,共6页
Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金
国家自然科学基金青年项目(52001235)
中国博士后科学基金资助项目(2020M682504)
湖北省教育厅科学技术研究资助项目(D20201501)。
关键词
室内安全定位
卷积神经网络
Wi-Fi指纹
深度学习
AP攻击
indoor safety localization
convolutional neural network
Wi-Fi fingerprint
deep learning
access point attack