期刊文献+

基于神经网络的Wi-Fi室内定位安全性问题研究 被引量:4

Research on Wi-Fi indoor location security based on CNN
原文传递
导出
摘要 针对现有的基于深度学习的室内定位解决方案容易受到无线接入点AP攻击的问题,提出了基于卷积神经网络(CNN)的室内定位框架,构建了一种基于深度学习的Wi-Fi指纹室内安全定位系统(DS-LocCNN),使得多建筑和多楼层在面对恶意攻击时的定位精度得到了保证.通过在UJIIndoorLoc数据集上评估此系统,证明了所提出的DS-LocCNN能很好地抵御基于AP的恶意攻击,且在建筑级定位和楼层级定位上的成功率优于现有的解决方案. Aiming at the problem that the existing indoor positioning solutions based on deep learning are vulnerable to AP(access point) attacks, a positioning framework based on convolutional neural networks(CNN) was proposed, and a deep learning-based Wi-Fi fingerprint indoor security positioning system(DS-LocCNN) was constructed,which enabled multi-building and multi-floor to face malicious attacks.The positioning accuracy during attack was guaranteed.By evaluating the system on the UJIIndoor Loc dataset, it is proved that the DS-LocCNN proposed can well resist AP-based malicious attacks, and its success rate is better than the current solutions in building-level localization and floor-level localization.
作者 程莉 朱会 马洪 元海文 CHENG Li;ZHU Hui;MA Hong;YUAN Haiwen(School of Electrical and Information Engineering,Wuhan Institute of Technology,Wuhan 430205,China;School of Electric Information and Communications,Huazhong University of Science and Technology,Wuhan 430074,China)
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第2期46-51,共6页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金青年项目(52001235) 中国博士后科学基金资助项目(2020M682504) 湖北省教育厅科学技术研究资助项目(D20201501)。
关键词 室内安全定位 卷积神经网络 Wi-Fi指纹 深度学习 AP攻击 indoor safety localization convolutional neural network Wi-Fi fingerprint deep learning access point attack
  • 相关文献

参考文献1

二级参考文献16

  • 1KAWAGUCHI N,YANO M,ISHIDA S. Underground positioning:subway information system using WiFi location technology[A].2009.371-372.
  • 2BISWAS J,VELOSO M. WiFi localization and navigation for autonomous indoor mobile robots[A].2010.4379-4384.
  • 3WOODMAN O,HARLE R. Pedestrian localisation for indoor environments[A].New York:ACM Press,2008.114-123.
  • 4YAMASAKI R,OGINO A,TAMAKI T. TDOA location system for IEEE 802.1 1b WLAN[A].[S.l.]:IEEE Press,2005.2338-2343.
  • 5LAMAfRCA A,CHAWATHE Y,CONSOLVO S. PlaceLab:device positioning using radio beawcons in the wild[A].Berlin:Springer-Verlag,2005.116-113.
  • 6BAHL P,PADMANABHAN V N. RADAR:an in-building RF-based location and tracking system[A].[S.l.]:IEEE Press,2000.775-784.
  • 7WANG Y,JIA X,LEE H K. An indoors wireless positioning system based on wireless local area network infrastructure[A].2003.21-34.
  • 8BATTITI R,BRUNATO M,VILLANI A. Statistical learning theory for location fingerprinting in wireless LANs[J].Computer Networks:the International Journal of Computer and Telecommunications Networking,2005,(06):825-845.
  • 9De MORAES L F M,NUNES B A A. Calibration-free WLAN location system based on dynamic mapping of signal strength[A].New York:ACM Press,2006.92-99.
  • 10TURNER D. On the empirical performance of self-calibrating WiFi location systems[A].[S.l.]:IEEE Press,2011.76-84.

共引文献32

同被引文献93

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部