摘要
为提高机器人在不同家庭环境下的服务任务执行能力,提出一种环境适应性服务策略生成方法,可生成以当前环境物品信息为主导的服务策略.首先,利用词频-逆文本频率(TF-IDF)算法构建服务指令集、关键字序列集与服务策略数据集;然后,对无规则自然语言指令进行语义解析与组块分析,分解映射至结构化服务指令以简化语义空间,获取对应待选关键字序列;最后,对包含当前家庭环境信息的Protégé本体知识库进行匹配、推理,获得服务关键字序列,引导经服务策略数据集微调的GPT-2模型生成适应性服务策略.实验结果表明:该方法能够提高服务策略生成的准确性,且最终生成的策略在具体家庭环境下具有更高的可行性.
In order to improve the service task execution ability of robots in different home environments,an environment-adaptive service strategy generation method was proposed,which could generate the service strategy based on the current environmental goods information. Firstly,term frequency-inverse document frequency(TF-IDF) algorithm was used to construct service instruction set,keyword sequence set and service strategy data set.Secondly,semantic parsing and block analysis were carried out for irregular natural language instructions,which were decomposed and mapped to structured service instructions to simplify the semantic space and obtain the corresponding keyword sequence to be selected. Finally,the Protégé ontology knowledge base containing the current family environment information was matched and inferred to obtain the service keyword sequence,and the GPT-2 model fine-tuned by the service strategy data set was guided to generate the adaptive service strategy.Experimental results show that this method can improve the accuracy of service strategy generation,and the final generated strategy is more feasible in a specific family environment.
作者
田国会
陈浩然
张梦洋
崔永成
TIAN Guohui;CHEN Haoran;ZHANG Mengyang;CUI Yongcheng(School of Control Science and Engineering,Shandong University,Jinan 250061,China)
出处
《华中科技大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2023年第2期102-108,共7页
Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金
国家自然科学基金资助项目(U1813215,61773239)。
关键词
机器人服务策略
环境适应性
关键字序列
深度学习
文本生成
robotic service strategy
environmental-adaptive
keyword sequence
deep learning
text generation