期刊文献+

基于目标检测的图形用户界面控件识别方法 被引量:4

Graphical user interface widget extraction based on object detection
下载PDF
导出
摘要 传统机器人流程自动化(Robot Process Automation,RPA)主要使用操作系统和应用程序提供的接口获取图形用户界面(Graphical User Interface,GUI)控件,受操作系统和应用程序接口限制,但一些系统,如Linux,不提供获取控件信息的接口.提出一种基于神经网络对图形界面控件进行识别的方法,利用目标检测模型提取图形用户界面控件特征,在不使用操作系统接口的前提下识别图形用户界面内控件类别和几何信息,减少RPA对于系统与程序接口的依赖.同时,针对桌面端图形用户界面数据集缺失的问题,提出一种针对RPA领域桌面端图形用户界面目标检测数据集的生成方法.在该图形用户界面数据集上使用各类目标检测模型进行测试,结果显示,常用目标检测模型在识别用户界面控件的类别和几何信息时均能获得92%以上的准确率. Traditional RPA(Robot Process Automation)extracts GUI(Graphical User Interface)widget category and location information through the interface provided by operating system or application programs.However,the application scope of RPA is limited by operating system and application program interfaces.For example,some operation systems,such as Linux,have inadequate extraction interface access to widget category and location information.This paper proposes a method to extract GUI widget features based on neural network and extract the widget information by object detection.Object detection can fetch and understand the widget in desktop platform feature then further extract the widget category and location information without using any operation system or application program interface,which reduce the dependence of RPA on the operation system and application program interface.Meanwhile,aiming at the lack of the user interface database in desktop platform,an auto database generation method for target detection in RPA field is also proposed.The object detection models are tested on this user interface database in desktop platform.Experimental results show that the object detection models can obtain more than 92%mAP in extracting widget category and location information in desktop platform.
作者 林灏昶 秦云川 蔡宇辉 李肯立 唐卓 Lin Haochang;Qin Yunchuan;Cai Yuhui;Li Kenli;Tang Zhuo(College of Electrical and Information Engineering,Hunan University,Changsha,410082,China;College of Computer Science and Electronic Engineering,Hunan University,Changsha,410082,China)
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第6期1012-1019,共8页 Journal of Nanjing University(Natural Science)
基金 国家重点研发项目(2020YFB2104005) 湖南省高新技术产业科技创新引领计划科技攻关项目(2020GK2037)。
关键词 目标检测 机器人流程自动化 深度学习 图形用户界面自动生成 自动化测试 object detection robotic process automation deep learning GUI auto-generation test automation
  • 相关文献

参考文献7

二级参考文献59

  • 1王阳,李振东,杨观赐.基于深度学习的OCR文字识别在银行业的应用研究[J].计算机应用研究,2020,37(S02):375-379. 被引量:22
  • 2Cheng-Lin Liu,Masaki Nakagawa.Precise candidate delection for large character set recognition by confidence evaluation[J].IEEE Transactions on Pattern Analysis an Machine Intelligence,2000,22(6):636-642.
  • 3Lee Y S,Chen H H.Analysis of error count distributions for improving the postprocessing performance of OCCR[J].Communications of Chinese Oriental Information Processing Society,1996,6(2):81-86.
  • 4Lei Xu,Adam Krzyzak,Ching Y S.Methods of combining multiple classifiers and their applications to handwriting recognition[J].IEEE Transactions on Systems,Man and Cybernetics,1992,22(3):418-435.
  • 5Eiki Ishidera,Atsushi Sato.A candidate reduction method for handwritten kanji character recognition[A].ICDAR'2001[C].Seattlo,USA:ICDAR,2001.8-13.
  • 6Luiz S Oliveira,Rovert Sabourin,Ching Y Suen.Automatic recognition of handwritten numerical strings:a recognition and verification strategy[J].IEEE Transactions on Pattern Analysis an Machine Intelligence,2002,24(11):1438-1454.
  • 7Gethin Williams,Steve Renals.Confidence measures from local posterior probability estimates[J].Computer Speech and Language,1999,13(4):395-411.
  • 8Xiaofan Lin,Xiaoqing Ding,Ming Chen,Rui Zhang,Youshou Wu.Adaptive confidence transform based classifier combination for Chinese character recognition[J].Pattern Recognition Letters,1998,19(10):975-988.
  • 9J Guo,N Sun etc.Algorithm for recognition of handwritten characters using pattern transformation with cosine function[J].IEICE Trans,1993,J76-D-II(4):835-842.
  • 10N Gorski,V Anisimov,E Augustin,O Baret,S Maximov.Industrial bank check processing:the A2iA CheckReaderTM[J].International Journal on Document Analysis and Recognition,2001,3:196-206.

共引文献268

同被引文献19

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部