摘要
本征ZnSn(OH)_(6)具有较宽的带隙(约4.0eV),价带和导带位置使其具有较高的氧化还原电势,有利于驱动光催化氧化还原反应,在环境净化和能源开发等领域展现出良好的应用前景。本文从ZnSn(OH)_(6)物理和化学性质出发,介绍了ZnSn(OH)_(6)晶体结构和表面结构,分析了制备方法对光催化性能的影响;基于ZnSn(OH)_(6)在光催化方面的应用研究,总结了ZnSn(OH)_(6)的改性策略,包括引入缺陷、元素掺杂、构建异质结、晶面调控;最后,重点概述了ZnSn(OH)_(6)基光催化材料在能源(产氢、二氧化碳还原)和环境领域(污水治理、空气净化)的应用。同时指出ZnSn(OH)_(6)基光催化剂在实际应用研究方面仍处于初步阶段,需要进一步探究改性策略对ZnSn(OH)_(6)应用需求的精准性,拓展其应用场景,为后续研究工作提供方向和思路,加速其工业化应用的进程。
The intrinsic ZnSn(OH)_(6)has a wide band gap(about 4.0eV), and the valence band and conduction band position make it have high redox potential, which is conducive to driving the photocatalytic redox reaction. It shows a good application prospect in the fields of environmental purification and energy development. In this review, the crystal structure and surface structure of ZnSn(OH)_(6)are introduced according to its physical and chemical properties. Based on the application of Zn Sn(OH)_(6)in photocatalysis, the modification strategies of ZnSn(OH)_(6)are outlined, including defect engineering, element doping, heterojunction establishment and crystal control. Finally, the application of ZnSn(OH)_(6)in energy development(hydrogen production and carbon dioxide reduction) and environmental treatment(sewage disposal and air purification) are emphasized. At the same time, it is pointed out that the practical application of ZnSn(OH)_(6)-based photocatalyst is still in the preliminary stage. In the future,it is necessary to further explore the accuracy of the modification strategy for ZnSn(OH)_(6)application requirements, expand its application fields, provide approaches and ideas for follow-up research, and accelerate the process of its industrial application.
作者
陈邦富
欧阳平
李宇涵
段有雨
董帆
CHEN Bangfu;OUYANG Ping;LI Yuhan;DUAN Youyu;DONG Fan(Engineering Research Center for Waste Oil Recovery Technology and Equipment,Ministry of Education,Chongqing Key Laboratory of Catalysis and New Environmental Materials,School of Environment and Resources,Chongqing Technology and Business University,Chongqing 400067,China;Nanchang Institute of Technology,Nanchang 330044,Jiangxi,China;College of Physics,Chongqing University,Chongqing 401331,China;Research Center for Environmental and Energy Catalysis,Institute of Fundamental and Frontier Sciences,University of Electronic Science and Technology of China,Chengdu 611731,Sichuan,China)
出处
《化工进展》
EI
CAS
CSCD
北大核心
2023年第2期756-764,共9页
Chemical Industry and Engineering Progress
基金
国家自然科学基金青年基金(51808080)
重庆市教委项目(KJQN201800826,KJZDK201800801)
重庆市博士后出站留渝项目。