摘要
知识图谱转译文本(Graph-to-Text)是知识图谱领域中一个新的任务,旨在将知识图谱转化为描述该知识的可读性文本。随着近年来研究的不断深入,知识图谱转译文本的生成技术已经被应用于商品评论生成、推荐解释生成、论文摘要生成等领域。现有方法中的转译模型均采用先规划后实现的方式,未能根据已生成文本动态调整规划且未按静态内容规划对知识进行跟踪,导致文本前后语义不连贯。为了提高生成文本语义的连贯性,文中提出了基于动态记忆和双层重构强化的知识图谱至文本转译模型,通过静态内容规划、动态内容规划和双层重构机制这3个阶段,弥补了知识图谱与文本之间的结构化差异,在生成文本的同时侧重关注各三元组中的重要内容。与现有的生成模型相比,该模型不仅能缓解知识图谱与文本之间的结构化差异,还提高了定位关键实体的能力,从而使生成的文本具有更强的事实一致性和语义连贯性。在WebNLG数据集上进行了广泛实验,结果表明,在知识图谱转译文本的任务上,所提模型与现有模型相比,内容规划更加准确,生成文本语句间的逻辑合理且关联性更强,在BLEU,METEOR,ROUGE,CHRF++等指标上优于现有模型。
Knowledge Graph-to-Text is a new task in the field of knowledge graph,which aims to transform knowledge graph into readable text describing these knowledge.With the deepening of research in recent years,the generation technology of Graph-to-Text has been applied to the fields of product review generation,recommendation explanation generation,paper abstract generation and so on.The translation model in the existing methods adopts the method of first-plan-then-realization,which fails to dynamically adjust the planning according to the generated text and does not track the static content planning,resulting in incohe-rent semantics before and after the text.In order to improve the semantic coherence of generated text,a Graph-to-Text model based on dynamic memory and two-layer reconstruction enhancement is proposed in this paper.Through three stages of static content planning,dynamic content planning and two-layer reconstruction mechanism,this model makes up for the structural difference between knowledge graph and text,focusing on the content of each triple while generating text.Compared with exis-ting generation models,this model not only compensates for the structural differences between knowledge graphs and texts,but also improves the ability to locate key entities,resulting in stronger factual consistency and semantics in the generated texts.In this paper,experiments are conducted on the WebNLG dataset.The results show that,compared with the current exis-ting models in the task of Graph-to-Text,the proposed model generates more accurate content planning.The logic between the sentences of the generated text is more reasonable and the correlation is stronger.The proposed model outperforms existing methods on me-trics such as BLEU,METEOR,ROUGE,CHRF++,etc.
作者
马廷淮
孙圣杰
荣欢
钱敏峰
MA Tinghuai;SUN Shengjie;RONG Huan;QIAN Minfeng(School of Computer and Software,Nanjing University of Information Science and Technology,Nanjing 210044,China;School of Artificial Intelligence(School of Future Technology),Nanjing University of Information Science and Technology,Nanjing 210044,China)
出处
《计算机科学》
CSCD
北大核心
2023年第3期12-22,共11页
Computer Science
基金
国家自然科学基金(62102187)
江苏省自然科学基金(基础研究计划)(BK20210639)
国家重点研发计划(2021YFE0104400)。
关键词
知识图谱文本转译
自然语言生成
记忆网络
重构机制
结构化数据
Knowledge Graph-to-Text
Natural language generation
Memory network
Reconstruction mechanism
Structured data