摘要
实体对齐是知识融合中的一个关键步骤,旨在发现知识图谱间存在对应关系的实体对。知识图谱融合后可以为下游提供更加广泛而准确的服务。现有的实体对齐模型对实体名称和关系的利用往往不足,在得到实体的向量表示后通过单一的迭代策略或者直接计算得出实体的对齐关系,忽略了部分有用信息,导致实体对齐的结果欠佳。针对上述问题,提出了一种基于图神经网络的多信息优化实体对齐模型。首先,模型的输入融合了实体名称中的单词信息和字符信息,通过注意力机制学习关系的向量表示并利用关系传递信息。在利用实体和关系的预对齐结果修正实体对齐矩阵的基础上,使用延迟接受算法修正部分错误对齐的结果。所提模型在DBP15K的3个子数据集上进行了对比和消融实验。结果表明,相比基线模型,其Hits@1指标分别提高了4.47%,0.82%和0.46%,Hits@10和MRR指标也取得了良好的结果。通过消融实验进一步验证了所提模型的有效性,总体上可以获得更加准确的实体对齐结果。
Entity alignment is a key step in knowledge fusion,which aims to discover entity pairs with corresponding relations between knowledge graphs.Knowledge fusion enables a more extensive and accurate services for further knowledge graph applications.However,the entity names and relations are used insufficiently by most of the state-of-the-art models of entity alignment.After obtaining the vector representation of the entity,generally the alignment relations among the entities are obtained through single iterative strategy or direct calculation,while ignoring some valuable information,so that the result of entity alignment is not ideal.In view of the above problems,a multi-information optimized entity alignment model based on graph neural network(MOGNN)is proposed.Firstly,the input of the model fuses word information and character information in the entity name,and the vector representation of relations is learnt through attention mechanism.After transmitting the information by utilizing relations,MOGNN corrects the initial entity alignment matrix based on the pre-alignment results of entities and relations,and finally employs the deferred acceptance algorithm to further correct the misaligned results.The proposed model is validated on three subsets of DBP15K,and compared with the baseline models.Compared with the baseline models,Hits@1 increases by 4.47%,0.82%and 0.46%,Hits@10 and MRR have also achieved impressive results,and the effectiveness of the model is further verifies by ablation experiments.Therefore,more accurate entity alignment results can be obtained with the proposed model.
作者
陈富强
寇嘉敏
苏利敏
李克
CHEN Fuqiang;KOU Jiamin;SU Limin;LI Ke(Smart City College,Beijing Union University,Beijing 100101,China)
出处
《计算机科学》
CSCD
北大核心
2023年第3期34-41,共8页
Computer Science
基金
国家自然科学基金(61972040)。
关键词
实体对齐
知识图谱
图神经网络
注意力机制
全局对齐
Entity alignment
Knowledge graph
Graph neural network
Attention mechanism
Global alignment