期刊文献+

基于自适应门控信息融合的多模态情感分析 被引量:1

Multimodal Sentiment Analysis Based on Adaptive Gated Information Fusion
下载PDF
导出
摘要 多模态情感分析的目标是使用由多种模态提供的互补信息来实现可靠和稳健的情感分析。近年来,通过神经网络提取深层语义特征,在多模态情感分析任务中取得了显著的效果。而多模态信息的不同层次的特征融合也是决定情感分析效果的重要环节。因此,提出了一种基于自适应门控信息融合的多模态情感分析模型(AGIF)。首先,通过门控信息融合网络将Swin Transformer和ResNet提取的不同层次的视觉和色彩特征根据对情感分析的贡献进行有机融合。其次,由于情感的抽象性和复杂性,图像的情感往往由多个细微的局部区域体现,而迭代注意可以根据过去的信息精准定位这些情感判别区域。针对Word2Vec和GloVe无法解决一词多义的问题,采用了最新的ERNIE预训练模型。最后,利用自动融合网络“动态”融合各模态特征,解决了(拼接或TFN)确定性操作构建多模态联合表示所带来的信息冗余问题。在3个公开的真实数据集上进行了大量实验,证明了该模型的有效性。 The goal of multimodal sentiment analysis is to achieve reliable and robust sentiment analysis by utilizing complementary information provided by multiple modalities.Recently,extracting deep semantic features by neural networks has achieved remarkable results in multimodal sentiment analysis.But the fusion of features at different levels of multimodal information is also an important part in determining the effectiveness of sentiment analysis.Thus,a multimodal sentiment analysis model based on adaptive gating information fusion(AGIF)is proposed.Firstly,the different levels of visual and color features extracted by swin transformer and ResNet are organically fused through a gated information fusion network based on their contribution to sentiment analysis.Secondly,the sentiment of an image is often expressed by multiple subtle local regions due to the abstraction and complexity of sentiment,and these sentiment discriminating regions can be located accurately by iterative attention based on past information.The latest ERNIE pre-training model is utilized to solve the problem of Word2Vec and GloVe’s inability to handle the word polysemy.Finally,the auto-fusion network is utilized to“dynamically”fuse the features of each modality,solving the pro-blem of information redundancy caused by the deterministic operation(concatenation or TFN)to construct multimodal joint representation.Extensive experiments on three publicly available real datasets demonstrate the effectiveness of the proposed model.
作者 陈真 普园媛 赵征鹏 徐丹 钱文华 CHEN Zhen;PU Yuanyuan;ZHAO Zhengpeng;XU Dan;QIAN Wenhua(College of Information Science and Engineering,Yunnan University,Kunming 650504,China;University Key Laboratory of Internet of Things Technology and Application,Yunnan Province,Kunming 650504,China)
出处 《计算机科学》 CSCD 北大核心 2023年第3期298-306,共9页 Computer Science
基金 国家自然科学基金(62162068,61271361,61761046,62061049) 云南省应用基础研究面上项目(2018FB100) 云南省科技厅应用基础研究计划重点项目(202001BB050043,2019FA044)。
关键词 多模态情感分析 门控信息融合网络 迭代注意 ERNIE 自动融合网络 Multimodal sentiment analysis Gated information fusion networks Iterative attention ERNIE Auto-fusion network
  • 相关文献

参考文献3

二级参考文献6

共引文献24

同被引文献17

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部