期刊文献+

基于LSTM的刀具数据异常检测方法的研究

Research on Cutlery Data Anomaly Detection Method Based on Long Short-Term Memory Network
下载PDF
导出
摘要 刀具状态是机械加工过程中影响产品质量的因素之一,其中刀具异常数据的有效检测将有助于掌握刀具状态,针对这一问题,论文提出了一种基于LSTM的数据异常检测方法。该方法采用LSTM模型对正常刀具数据进行训练预测,预测之后使用正态分布建模方法求均值作为阈值,将实时采集到的刀具数据预测建模求得的值与阈值进行比较,得到异常数据。对比找到适合的神经网络层数和隐藏的神经元个数,最终结果显示,双层神经网络和128个隐藏神经元的结合,预测准确率提高50%;同时将LSTM算法与PCA降维算法在准确度方面进行了比较,准确度提高约20%,验证了LSTM的有效性。 The tool status is one of the factors that affects the product quality during machining,and the tool status can be grasped by effectively detecting the tool failure data. This document uses the LSTM-based method to detect data errors. This method uses a LSTM model to train and predict regular tooling data. After the prediction,the normal distribution modeling method is used to get the mean as a threshold,and the value obtained by predictive modeling of the tool data collected in real time with the threshold to get anomalous data is compared. The number of suitable neural network layers is compared with the number of hidden neurons.The final results show that the combination of a two-layer neural network and 128 hidden neurons improves the prediction accuracy by 50%. At the same time,the LSTM algorithm and the PCA dimension reduction algorithm are accurate. Compared to accuracy,accuracy is improved by about 20%,demonstrating the effectiveness of LSTM.
作者 李建伟 鲁一萍 郭宏 LI Jianwei;LU Yiping;GUO Hong(School of Computer Science and Technology,Taiyuan University of Science and Technology,Taiyuan 030024;School of Mechanical Engineering,Taiyuan University of Science and Technology,Taiyuan 030024)
出处 《计算机与数字工程》 2022年第12期2821-2825,共5页 Computer & Digital Engineering
基金 山西省回国留学人员基金项目(编号:HGKY2019079)资助。
关键词 刀具数据 异常检测 长短时记忆网络 神经网络 cutlery data anomaly detection long short-term memory(LSTM)network neural network
  • 相关文献

参考文献9

二级参考文献78

  • 1闵睿,许黎明,魏臣隽,胡德金.机械加工系统运行状态异常检测方法的研究[J].仪器仪表学报,2006,27(z3):1777-1778. 被引量:9
  • 2张海,王尧,常象宇,徐宗本.L_(1/2)正则化[J].中国科学:信息科学,2010,40(3):412-422. 被引量:15
  • 3曹冬磊,曹建农,金蓓弘.一种无线传感器网络中事件区域检测的容错算法[J].计算机学报,2007,30(10):1770-1776. 被引量:29
  • 4肖贵.机械加工系统运行状态异常检测方法及措施探讨[J].企业技术幵发,2011,30(3):83-84.
  • 5MCARTHUR S D J, B(X)TH C D,MCDONALD J R, et al.An Agent-based anomaly detection architecture for conditionmonitoring[J]. IEEE Transactions on Power Systems, 2005,20(4):1675-1682.
  • 6WANG Tianyang, CHENG Weidong, LI Jianyong, et al. A-nomaly detection for equipment condition via cross-correlationapproximate entropy [C]//Proceedings of 2011 InternationalConference on Management Science and Industrial Engineer-ing. Washington, D. C. .USA:IEEE, 2011:52-55.
  • 7GAO Yu, YANG Tianshe, XU Minqiang,et al. An unsuper-vised anomaly detection approach for spacecraft based on nor-mal behavior clustering [C]//Proceedings of the 5th Interna-tional Conference on Intelligent Computation Technology andAutomation. Washington, D. C. . USA:IEEE. 2012:478-481.
  • 8Zhan B, Monekosso DN, Remagnino P, Velastin SA, Xu LQ. Crowd analysis: A survey. Machine Vision and Applications, 2008, 19(5-6):345-357. [doi: 10.1007/s00138-008-0132-4].
  • 9Junior JCSJ, Musse SR, Jung CR. Crowd analysis using computer vision techniques. IEEE Signal Processing Magazine, 2010,27(5): 66-77. [doi: 10.1109/MSP.2010.937394].
  • 10Thida M, Yong YL, Climent-Perez p, Eng HL, Remagnino P. A literature review on video analytics of crowded scenes. In: Proc. of the Intelligent Multimedia Surveillance. Berlin, Heidelberg: Springer-Verlag, 2013. 17-36. [doi: 10.1007/978-3-642-41512-8 2].

共引文献112

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部