期刊文献+

基于改进DBSCAN的船舶轨迹聚类方法研究 被引量:4

Research on Clustering Method of Vessel Trajectory Based on Improved DBSCAN
下载PDF
导出
摘要 为了辅助海上安全监管,科学分析海上交通安全态势,根据有着大量船舶航行特征的AIS数据,提出一种改进轨迹段的DBSCAN算法进行轨迹聚类。在对原始AIS数据进行预处理后,结合航向变化率和航速变化率获取特征点的方式来进行轨迹分段,采用融合距离(MD)作为船舶轨迹的距离计算方法,并且充分考虑航向信息和航速信息来进行相似度度量,传统的DBSCAN算法只对点进行聚类,改进后的DBSCAN算法可以对轨迹分段后的轨迹子段进行聚类分析,通过实验分析,可以得到船舶典型运动轨迹,实验对比结果显示,论文所提聚类方法在一定程度上可以获得更好的聚类效果。船舶轨迹聚类是船舶轨迹预测的基础,因此得到更好的聚类结果有利于提高后续预测的准确度。 In order to assist maritime safety supervision and scientific analysis of maritime traffic safety situation,a DBSCAN algorithm with improved trajectory segments is proposed for trajectory clustering based on AIS data with a large number of vessel navigation characteristics. After pre-processing the raw AIS data,the trajectory segmentation is performed by combining the heading change rate and speed change rate to obtain feature points. The Merge Distance(MD)is used as the distance calculation method for vessel trajectory,and the heading information and speed information are fully considered for the similarity measure. The traditional DBSCAN algorithm clusters only the points,the improved DBSCAN algorithm can cluster and analyze the sub-segments of the trajectory after the segmentation of the trajectory. Through the experimental analysis,the typical motion trajectory of the vessel can be obtained,and the experimental comparison results show that the clustering method proposed in this paper can obtain a better clustering effect to a certain extent. Vessel trajectory clustering is the basis of vessel trajectory prediction,so getting better clustering results is helpful to improve the accuracy of subsequent prediction.
作者 刘钰 彭鹏菲 LIU Yu;PENG Pengfei(School of Electronic Engineering,Naval Engineering University,Wuhan 430033)
出处 《舰船电子工程》 2022年第12期57-63,共7页 Ship Electronic Engineering
关键词 轨迹聚类 轨迹分段 DBSCAN 相似度度量 融合距离 trajectory clustering trajectory segment DBSCAN similarity measure merge distance
  • 相关文献

参考文献10

二级参考文献90

  • 1陈继东,孟小峰,赖彩凤.基于道路网络的对象聚类[J].软件学报,2007,18(2):332-344. 被引量:29
  • 2纪贤标,邵哲平,潘家财,孙腾达.AIS信息分布式采集系统的开发及关键技术[J].上海海事大学学报,2007,28(1):28-31. 被引量:17
  • 3邵哲平,孙腾达,潘家财,纪贤标.基于ECDIS和AIS的船舶综合信息服务系统的开发[J].中国航海,2007,30(2):30-33. 被引量:33
  • 4吴兆麟,朱军编著.海上交通丁程(第二版)[M].大连:大连海事大学出版社,2004.
  • 5国际海事组织.通用船载自动识别系统国际标准汇编[G].袁安存,张淑芳编译.大连:大连海事大学出版社,2005.
  • 6Shao Zheping, Sun Teng da, Pan Jiacai, Ji Xianbiao. Vessel information service system based on ECDIS and AIS[C]. Proceedings of ICTE 2007 ,ASCE, 1678- 1683.
  • 7JI Xian-biao, SHAO Zhe-ping, PAN Jia-cai, et al. A new AIS-based way to conduct OLAP of maritime traffic flow [C]. Proceedings of ICTE 2009, ASCE, 3718 -3723.
  • 8Jiawei Han and Micheline Kamber.数据挖掘概念与技术(第2版)[M].范明,孟小峰译.北京:机械工业出版社,2007.
  • 9D. Hand, H. Mannila and P. Smyth.数据挖掘原理[M].张银奎,廖丽,宋俊,等译.北京:机械工业出版社,2003.
  • 10LEE J G, HAN J W, WHANG K Y. Trajectory clustering: a partition-and-group framework[A]. Proceedings of the 2007 ACM SIG-MOD International Conference on Management of Data[C]. Beijing, China, 2007. 593-604.

共引文献201

同被引文献24

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部