摘要
本文研究了基于Q-张量框架的可压缩活性液晶模型的流体动力学问题.在全空间或者圆环上,我们证明了模型的大初值局部经典解的存在性.并且,在一定的系数假设下,我们给出了在常数态附近圆环上小初值全局经典解的存在性.
We consider the hydrodynamics of compressible flow of active liquid crystals model in the Q-tensor framework.The existence of local-in-time classical solution with large initial data in the whole space or torus is established.Furthermore,with an assumption on the coefficients,we also prove the global-in-time existence of classical solutions near a constant state with small initial data on the torus.
作者
江宁
柯琳琳
宋晓宇
JIANG Ning;KE Lin-lin;SONG Xiao-yu(School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China;Chongqing Bashu Secondary School,Chongqing 400013,China)
出处
《数学杂志》
2023年第2期95-125,共31页
Journal of Mathematics
基金
Supported by National Natural Science Foundation of China(11971360)。
关键词
可压缩活性液晶模型
经典解
平衡态附近
全局时间
Compressible active liquid crystal model
classical solution
near equilibrium
global in time