期刊文献+

基于YOLOv5+Deep-SORT的运煤车辆目标检测与跟踪 被引量:1

Target Detection and Tracking of Coal Vehicles Based on YOLOv5+Deep-SORT
下载PDF
导出
摘要 煤的运输对山西煤矿资源的管理有着重要意义。本研究使用某洗煤厂的入口监控视频进行间隔帧的提取,选取mAP@0.5为0.957的YOLOv5算法对视频中运煤车辆进行目标检测,在此基础上使用Deep-SORT算法进行目标跟踪,并实现了运煤车辆的统计。系统的设计和实现解决了洗煤厂在运煤过程中煤丢失的问题。 The transportation of coal is of great significance to the management of coal resources in Shanxi.In this study,the interval frames are extracted from the video of entrance monitoring of a coal washery,and the relevant data sets are made.mAP@0.5 of YOLOv5 algorithm is used to detect the target of coal vehicles in the video.On this basis,the Deep-SORT algorithm is used to track the target,and the statistics of coal vehicles are realized.The design and implementation of the system solves the problems of coal loss in the process of transporting coal.
作者 赵士杰 Zhao Shijie(Information Industry Branch of Chinese Coal Pingshuo Development Group,Shuozhou Shanxi 036006,China)
出处 《山西电子技术》 2023年第1期1-3,共3页 Shanxi Electronic Technology
关键词 目标检测与跟踪 YOLOv5 Deep-SORT target detection and tracking YOLOv5 Deep SORT
  • 相关文献

参考文献3

二级参考文献29

共引文献123

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部