摘要
考虑连续型向上敲出巴黎期权定价问题.首先,针对该类型巴黎期权,给出一个时间1阶、空间2阶精度的隐式差分格式;其次,采用不等式放大方法和Fourier展开方法分别讨论差分格式的稳定性、可解性和收敛性;最后,利用差分格式分析连续型向上敲出巴黎期权的数值定价结果.
We considered the continuous up-and-out Paris option pricing problem.Firstly,an implicit difference scheme with the first order in time and the second order in space was given for this type of Paris option.Secondly,the inequality amplification method and Fourier expansion method were used to discuss the stability,solvability and convergence of the difference scheme,respectively.Finally,the numerical pricing results of continuous up-and-out Paris options were analyzed by using the difference scheme.
作者
丰月姣
刘宝亮
张秀珍
FENG Yuejiao;LIU Baoliang;ZHANG Xiuzhen(School of Mathematics and Statistics,Shanxi Datong University,Datong 037009,Shanxi Province,China;School of Statistics,East China Normal University,Shanghai 200241,China)
出处
《吉林大学学报(理学版)》
CAS
北大核心
2023年第2期265-274,共10页
Journal of Jilin University:Science Edition
基金
山西省高等学校科技创新计划项目(批准号:2019L0738
2020L0463).
关键词
连续型向上敲出巴黎期权
数值模拟
稳定性
收敛性
可解性
continuous up-and-out Paris option
numerical simulation
stability
convergence
solvability