期刊文献+

融合发文时序特征的用户属性预测方法 被引量:1

User Attribute Prediction Method Fusing Post Temporal Features
下载PDF
导出
摘要 现有的用户属性预测方法通常基于用户发文的语义特征,忽略了能够体现发文之间依赖关系的时序特征。针对此问题,提出一种融合发文时序特征的用户属性预测方法。该方法基于用户发文流,利用Word2Vec生成具有语义特征的发文向量,然后通过双向长短期记忆(Bidirectional Long Short Memory, Bi-LSTM)神经网络提取时序特征,最后输入全连接层和Softmax实现属性预测。实验结果表明,与未使用时序特征的属性预测方法相比,该方法具有较好的精确率和召回率。 Previous studies on attribute prediction are mainly based on semantic features of users’ postings, while the temporal features that present the dependent relationship between the postings are neglected. In view of this research gap, the attribute prediction method based on temporal features is proposed. On the basis of post flows, the vectors with semantic features are generated by Word2Vec, and the temporal features are extracted by Bi-directional Long Short Memory neural network. Thus, attribute prediction is achieved when the vectors fused with temporal features are sent to the fully connected layer and Softmax. Experimental results demonstrate that this method has higher performance on precision and recall than other attribute prediction methods.
作者 任帅 任化娟 井靖 董姝岐 REN Shuai;REN Huajuan;JING Jing;DONG Shuqi(Information Engineering University,Zhengzhou 450001,China)
机构地区 信息工程大学
出处 《信息工程大学学报》 2022年第6期724-729,共6页 Journal of Information Engineering University
基金 国家重点研发计划资助项目(2018YFB0804503)。
关键词 属性预测 语义特征 时序特征 Bi-LSTM attribute prediction semantic features temporal features Bi-LSTM
  • 相关文献

参考文献8

二级参考文献99

  • 1王杨,许闪闪,李昌,艾世成,张卫东,甄磊,孟丹.基于支持向量机的中文极短文本分类模型[J].计算机应用研究,2020,37(2):347-350. 被引量:30
  • 2王细薇,樊兴华,赵军.一种基于特征扩展的中文短文本分类方法[J].计算机应用,2009,29(3):843-845. 被引量:36
  • 3王茜,杨莉云,杨德礼.面向用户偏好的属性值评分分布协同过滤算法[J].系统工程学报,2010,25(4):561-568. 被引量:24
  • 4朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 5Java A. Mining Social Media Communities and Content [ D]. United States-Maryland: University of Maryland, Baltimore County, 2008.
  • 6Shang M S, Zhang Z K, Zhou T, et al. Collaborative filtering with diffusion-based similarity on tripartite graphs[ J ]. Physica A: Statistical Mechanics and its Applications, 2010, 389(6) : 1259-1264.
  • 7Zhang Z K, Zhou T, Zhang Y C. Personalized recommendation via integrated diffusion on User-Item-Tag tripartite graphs [ J ]. Physica A: Statistical Mechanics and its Applications ,2010,389 ( 1 ) : 179-186.
  • 8Dao T H, Jeong S R, Ahn H. A novel recommendation model of location-based advertising: context-aware collaborative filtering using ga approach [ J ]. Expert Systems with Applications,2012, 39 (3) : 3731-3739.
  • 9Lee S K, Cho Y H, Kim S H. Collaborative filtering with ordinal scale-based implicit ratings for mobile music recommendations[ J]. Information Sciences, 2010, 180 (11) : 2142-2155.
  • 10Jannach D, Zanker M, Felfernig A, et al. Recommender systems: An Introduction [ M ]. Cambridge Cambridge University Press, 2010.

共引文献151

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部