期刊文献+

高电容性能MXene电极对插层修饰离子的选择性 被引量:1

Selectivity for intercalated ions in MXene toward a high-performance capacitive electrode
原文传递
导出
摘要 离子插层是提高Ti_(3)C_(2)TxMXene电化学性能的有效方法之一.然而,不同的插层离子对MXene的结构和电化学性能的影响是否相同这一问题尚不清楚.本文系统研究了Li+、Na+、K+、Cs+、Zn2+、Mg2+、SO_(4)2-和OH-等一系列离子插层后的MXene的结构特征和电化学性能.研究结果表明,插层离子的半径、电荷数和化学特性对插层效果都会产生影响.在所研究的插层剂中,由离子半径最大的一价阳离子Cs+和具有强碱性的阴离子OH-组成的插层剂CsOH对MXene具有较好的插层效果.插层后的MXene层间距增大,层间容纳了大量游离水,Ti的价态升高,片层表面有利于氧化还原反应的含O官能团增多,这都大大促进了电解液离子H+的扩散与存储.由此制备的电极的质量比电容大幅度提高,为原始MXene电极的7倍多,而且经过20,000次充放电循环后电容保持率未发生下降.本文为具有高电容性能的MXene和MXene基复合电极的合理设计和制备提供了指导. The intercalation of foreign ions has been demonstrated to be one of the effective methods to improve the electrochemical performance of Ti_(3)C_(2)TxMXene.However,whether different intercalated ions have diverse impacts on the MXene structure and electrochemical properties is not well understood.Herein,we comprehensively investigated the structural features and electrochemical performances of a series of ions,including Li+,Na+,K+,Cs+,Zn2+,Mg2+,SO_(4)2-,and OH-intercalated MXenes.Different ions are observed to exhibit variations in the intercalation effect because of the differences in their sizes,charge numbers,and chemical features.Among the investigated intercalation agents,CsOH composed of monovalent Gs+with a large size and strong base anion OH-exhibits a superior intercalation effect,where a large interlayer space accommodating a large amount of free water,a high oxidation state of Ti and a preferred surface with more O-containing functional groups for redox reaction is created,intensifying the pseudocapacitive H+intercalation.Therefore,CsOH-treated MXene exhibits a significant enhancement in gravimetric capacitance(i.e.,approximately725% of the original) and more than 100% capacitance retention over 20,000 cycles.This paper provides a guideline for the rational design and construction of high-capacitance MXene and MXene-based hybrid electrodes in aqueous electrolytes.
作者 胡敏敏 代君 陈丽红 孟阿兰 王磊 李桂村 谢海姣 李镇江 Minmin Hu;Jun Dai;Lihong Chen;Alan Meng;Lei Wang;Guicun Li;Haijiao Xie;Zhenjiang Li(School of Materials Science and Engineering,Qingdao University of Science and Technology,Qingdao 266042,China;College of Electromechanical Engineering,Qingdao University of Science and Technology,Qingdao 266042,China;State Key Laboratory Base of Eco-chemical Engineering,College of Chemistry and Molecular Engineering,Qingdao University of Science and Technology,Qingdao 266042,China;Hangzhou Yanqu Information Technology Co.,Ltd.,Hangzhou 310003,China)
出处 《Science China Materials》 SCIE EI CAS CSCD 2023年第3期974-981,共8页 中国科学(材料科学(英文版)
基金 financially supported by the National Natural Science Foundation of China (52072196, 52002199, 52002200, and 52102106) the Major Basic Research Program of Natural Science Foundation of Shandong Province (ZR2020ZD09) the Natural Science Foundation of Shandong Province (ZR2019BEM042 and ZR2020QE063) the Innovation and Technology Program of Shandong Province (2020KJA004) the Open Project of Chemistry Department of Qingdao University of Science and Technology (QUSTHX201813) the Postdoctoral Innovation Project of Shandong Province (202101020) Taishan Scholars Program of Shandong Province (ts201511034)。
  • 相关文献

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部