摘要
碱性水电解(AWE)作为一种具有工业应用前景的绿色制氢方法,能够用来改善能源短缺和环境污染问题.然而,由于电极材料昂贵且效率低下,这种方法生产氢气的效率比较低.本文采用块状AlCoCrFeNi高熵合金作为碱性电解水的有效电极.研究发现通过快速阳极氧化(5 min)处理的高熵合金可以同时对析氢和析氧反应(HER和OER)具有超高的催化活性,只需要880和845 m V的过电位就可以达到-500 mA cm-2(HER)和500 mA cm-2(OER)的电流密度.特别地,该催化剂只需要3.00 V就可以达到500 mA cm-2的全解水电流密度,并且在此电流密度下表现出超过100小时的出色稳定性.我们的研究表明,阳极氧化的块体AlCoCrFeNi高熵合金作为高效催化剂在工业水电解制氢中具有广阔的应用前景,有望用于缓解环境问题和能源危机.
Alkaline water electrolysis(AWE) is a prospective method for producing green hydrogen to solve the energy crisis and reduce environmental pollution. However,the hydrogen production efficiency through this process is exceptionally low because the electrodes are expensive and inefficient. In this work, a kind of high-entropy alloy(HEA),bulk AlCoCrFeNi, is used as the efficient electrode for AWE.Results show that the HEA treated by 5-min fast anodization can achieve ultra-high catalytic activities for hydrogen and oxygen evolution reactions with low overpotentials of 880 and845 mV to reach the current densities of-500 and500 mA cm-2, respectively. For full water splitting, it only needs 3.00 V and exhibits excellent stability of more than100 h at 500 mA cm-2. Our study demonstrates that the anodized AlCoCrFeNi HEA has promising applications as a highly efficient catalyst in industrial water electrolysis for hydrogen production, potentially addressing the energy crisis and environmental concerns.
作者
周鹏飞
黄宝琪
牛朋达
陈明鹏
郭志达
汤育欣
李瑞迪
王双鹏
潘晖
Pengfei Zhou;Po Kee Wong;Pengda Niu;Mingpeng Chen;Chi Tat Kwok;Yuxin Tang;Ruidi Li;Shuangpeng Wang;Hui Pan(Institute of Applied Physics and Materials Engineering,University of Macao,Macao SAR 999078,China;Department of Electromechanical Engineering,Faculty of Science and Technology,University of Macao,Macao SAR 999078,China;Science and Technology on High Strength Structural Materials Laboratory,State Key Laboratory of Powder Metallurgy,Central South University,Changsha 410083,China;College of Chemical Engineering,Fuzhou University,Fuzhou 350116,China;Department of Physics and Chemistry,Faculty of Science and Technology,University of Macao,Macao SAR 999078,China)
基金
supported by the Multi-Year Research Grants(MYRG2020-00207-IAPME)from the University of Macao
the Science and Technology Development Fund from Macao SAR(FDCT)(0125/2018/A3,0081/2019/AMJ,0033/2019/AMJ,0102/2019/A2,and 0154/2019/A3)
the Nature Science Foundation of Shandong Province(ZR2020ZD04)
Hunan Science Fund for Distinguished Young Scholars(2020JJ2046).