摘要
宽带有机光电探测器(OPDs)可以集成到各种可穿戴设备中,在健康监测等领域显示出巨大的应用潜力.这里,我们以酞菁铅(PbPc)和富勒烯(C70)小分子分别作为给体和受体,基于MoO_(3)俘获电子辅助空穴隧道注入的机制实现了高性能宽带倍增型有机光电探测器(PM-OPDs).为了控制PbPc分子的晶相结构,我们分别制备了PbPc:C70体异质结(BHJ)和PbPc/C70平面异质结(PHJ)器件.可以看出,PHJ器件表现出更强的近红外吸收特性,即更有利于PbPc分子形成三斜相结构.我们进一步使用具有吸收互补特性的材料(PbPc和SubPc)作为有源层,采用PHJ/BHJ混合异质结结构,制备了在300–1000 nm范围内平坦的全色PM-OPDs.在-8 V反向偏压下,制得的全色PM-OPDs在整个光谱响应范围内的外量子效率都超过1000%.最后,我们在聚对苯二甲酸乙二醇酯基板上制备了柔性全色PM-OPDs,并成功地实现了人体脉搏信号的检测.本文通过设计器件结构和选择合适的材料,为获得高性能全色PM-OPDs提供了一种新策略.
Broadband organic photodetectors(OPDs) can be integrated into various wearable devices and show great application potential in health monitoring and other fields.Here, we demonstrated high-performance broadband photomultiplication-type OPDs(PM-OPDs) based on MoO_(3) trapping electron-assisted hole tunneling injection mechanism with small-molecule lead(II) phthalocyanine(PbPc) and C70fullerene as the donor and acceptor, respectively. In order to control the crystal phase structure formed by PbPc molecules,we prepared PbPc:C70 bulk heterojunction(BHJ) and PbPc/C70planar heterojunction(PHJ) devices. It can be seen that the PHJ device exhibits stronger near-infrared(NIR) absorption characteristics, which is more conducive to the formation of the triclinic phase structure of the PbPc molecule. We further prepared flat panchromatic PM-OPDs in the range of300–1000 nm by using materials(PbPc and SubPc) with absorption complementary characteristic as the active layers and PHJ/BHJ hybrid heterojunction structure. The external quantum efficiency of the resulting panchromatic PM-OPDs exceeds 1000% in the whole spectral response range under-8 V reverse bias. Finally, we prepared flexible panchromatic PM-OPDs on polyethylene terephthalate substrate and successfully realized the detection of the human pulse signal. This work provides a new strategy for obtaining high-performance panchromatic PM-OPDs by designing device structures and selecting appropriate materials.
作者
虢德超
杨丽清
李骥
何果
郑景博
陶思哲
杨德志
王林格
Agafonov Vadim
马东阁
Dechao Guo;Liqing Yang;Ji Li;Guo He;Jingbo Zheng;Sizhe Tao;Dezhi Yang;Linge Wang;Agafonov Vadim;Dongge Ma(Center for Aggregation-Induced Emission,Institute of Polymer Optoelectronic Materials and Devices,Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates,Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials,State Key Laboratory of Luminescent Materials and Devices,South China University of Technology,Guangzhou 510640,China;South China Advanced Institute for Soft Matter Science and Technology,School of Emergent Soft Matter,Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices,South China University of Technology,Guangzhou 510640,China;Moscow Institute of Physics and Technology,Dolgoprudny 141700,Russia)
基金
supported by the National Natural Science Foundation of China(U21A6002)
Guangzhou Science and Technology Plan Project(202102080332)
Guangdong Province Basic and Applied Basic Research Fund Project(2021A1515012560)
Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates,China(2019B030301003)
the Research Project of Jilin Province(20191102006YY)
Guo D is thankful for the support from China Postdoctoral Science Foundation(2022M711193).