期刊文献+

CeO_(2)and CeO_(2)-based nanomaterials for photocatalytic,antioxidant and antimicrobial activities 被引量:7

原文传递
导出
摘要 Cerium oxide(CeO_(2)),one of the most significant rare-earth oxides,has attracted considerable interest over the past decades.This is primarily due to the ease in Ce^(3+)/Ce^(4+)redox ability as well as other factors that affect the efficacy of CeO_(2)and CeO_(2)-based materials.CeO_(2)and CeO_(2)-based materials have shown enhanced responses in catalytic and photocatalytic activities for environmental and biological applications.In addition,the formation of Ce^(3+)and oxygen vacancies in CeO_(2)has aided in enhancing CeO_(2)activities.In order to produce oxygen-deficient CeO_(2)and CeO_(2)-based materials,a variety of synthesis methods were used and are highlighted in this review.Therefore,this review compiles and discusses the mechanisms that involve oxygen vacancies,defects,and Ce^(3+)formation for environmental applications,such as photocatalytic dye degradation,photocatalytic CO_(2)reduction,and non-colored pollutants removal.The biological applications of CeO_(2),such as antioxidant enzyme mimetic,antioxidant reactive oxygen species/reactive nitrogen species,and antimicrobial activities,are also discussed.Additionally,future prospects are also suggested for future development and detailed investigations.
机构地区 Chemical Sciences
出处 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第2期167-181,共15页 稀土学报(英文版)
基金 the FRC grant(UBD/RSCH/1.4/FICBF(b)/2022/046)received from Universiti Brunei Darussalam,Brunei Darussalam。
  • 相关文献

同被引文献37

引证文献7

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部