期刊文献+

基于3层分解和卷积神经网络的多模态医学图像融合 被引量:2

Multi-modal Medical Image Fusion Based on Three-layer Decomposition and Convolutional Neural Network
下载PDF
导出
摘要 针对多尺度分解(multi-scale decomposition,MSD)方法会导致图像细微组织结构丢失和产生噪声的问题,结合结构纹理分解模型、改进的卷积神经网络和相位一致性方法,提出1种新的多模态医学图像融合方法。首先,针对MSD容易产生噪声的问题,引入低通滤波器优化函数和结构纹理分解模型,有效解决了分解技术的难题;其次,对结构纹理部分设计1种基于卷积神经网络结合高斯平滑的融合方法,加强了对图像细节部分的提取,消除了噪声,并对高频部分引入基于相位一致性的改进方法进行融合;然后通过分解过程的逆变换得到最终的融合图像。定性、定量分析表明,所提出的算法在视觉效果、互信息(mutual information,MI)、特征互信息(feature mutual information,FMI)、结构相似性(structure similarity index measure,SSIM)、信息熵(entropy of information,EN)、峰值信噪比(peak signal to noise ration,PSNR)方面都达到了较高水平,融合后的图像更有利于专家和医生的诊断。 The multi-scale decomposition(MSD)method will lead to loss of the fine organizational structure of the image and generation of noise.A new multi-modal medical image fusion method is proposed by combining the structural texture decomposition model,improved convolutional neural network and phase consistency method.Firstly,aiming at the phenomenon that MSD is liable to produce noise,low pass filter optimization function and structure texture decomposition model are introduced to effectively solve the problem of decomposition technology.Secondly,a fusion method based on convolutional neural network combined with Gaussian smoothing is designed for the structural texture part,which enhances the extraction of details and eliminated the noise.The high-frequency part is fused with an improved method based on phase consistency.The final fusion image is obtained by the inverse transformation of the decomposition process.Through qualitative and quantitative analysis,the proposed algorithm has achieved a higher level in terms of visual effect,mutual information(MI),feature mutual information(FMI),structure similarity index measure(SSIM)and entropy of information(EN),peak signal to noise ration(PSNR)and the fused image is more conducive to the diagnosis of experts and doctors.
作者 赵婉婉 方贤进 苏树智 ZHAO Wanwan;FANG Xianjin;SU Shuzhi(School of Computer Science and Engineering,Anhui University of Science and Technology,Huainan 232001,China)
出处 《湖北民族大学学报(自然科学版)》 CAS 2023年第1期71-78,共8页 Journal of Hubei Minzu University:Natural Science Edition
基金 安徽高校与人工智能研究院协同创新项目(GXXT-2021-006)。
关键词 多模态医学图像融合 多尺度分解 卷积神经网络 低通滤波器 相位一致性 multimodal medical image fusion multi-scale decomposition convolutional neural network low pass filter consistency of phase
  • 相关文献

参考文献3

二级参考文献41

  • 1姜长泓,王龙山,尤文,翟宁,初明.基于平移不变小波的声发射信号去噪研究[J].仪器仪表学报,2006,27(6):607-610. 被引量:29
  • 2陈锦,曾东.基于Spline金字塔的图像融合方法[J].实验科学与技术,2007,5(1):129-131. 被引量:3
  • 3Nguyen H M, Haldar J P, Do M N, et al. Denoising of MR spectroscopic imaging data with spatial spectral[C]//IEEE International Sym posium on Biomedical Imaging: From Nano to Macro. 2010, 7:720 -723.
  • 4Chan T F, Wong Chiu-Kwong. Total variation blind deconvolution[J]. IEEE Trans on Image Proc, 1998, 7(3):570-375.
  • 5Shensa M J, The discrete wavelet transform: Wedding the a trous and Mallat algorithms[J], IEEE Trans on Signal Proc, 1992, 40(10): 2464- 2482.
  • 6Lysaker M, Lundervold A, Tai Xue-Cheng. Noise removal using fourth-order partial differential equation with applications to medical mag- netic resonance images in space and time[J]. IEEETrans on Image Proc, 2003, 12(12):1579- 1590.
  • 7Chambolle A. An algorithm for total variation minimization and applications[J]. J Math Imaging Vision, 2004, 20:89 -97.
  • 8LI SH T,YANG B,HU J W.Performance comparison of different multi-resolution transforms for image fusion[J].Information Fusion,2011,12 (2):74-84.
  • 9CHAI Y,LI H F,ZHANG X Y.Multifocus image fusion based on features contrast of multiscale products in nonsubsampled contourlet transform domain[J].Optik-International Journal for Light and Electron Optics,2012,123(7):569-581.
  • 10SHI J,LIU X,ZHANG N.Multi resolution analysis and orthogonal wavelets associated with fractional wavelet transform[J].Signal,Image and Video Processing,2013:1-10.

共引文献63

同被引文献20

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部