期刊文献+

基于挥发性成分定量预测风味茶油掺浸出茶油的偏最小二乘回归模型的建立 被引量:2

Establishment of Partial Least Squares Regression Model for Quantitative Prediction of Flavor Camellia Oil Adulterated with Extracted Camellia Oil Based on Volatile Components
下载PDF
导出
摘要 为解决在压榨风味茶油掺浸出茶油的定量预测问题,本文设计高/低两个掺伪梯度,基于挥发性成分,运用Python语言构建定量预测压榨风味(原香和浓香)茶油掺浸出茶油的偏最小二乘回归(PLSR)模型。研究结果表明,高掺伪梯度下压榨原/浓香茶油样本的定量鉴别PLSR模型的平均R2值均达到了0.998,平均RMSE值为1.127/1.166,大部分样本的相对误差集中在0~0.1之间;低掺伪梯度下压榨原/浓香茶油样本的定量鉴别PLSR模型的平均R2值达到了0.956/0.999,平均RMSE值为0.592/0.094,大部分样本的相对误差集中在0~0.15/0~0.02之间。本文所构建的PLSR模型定量鉴别压榨风味茶油掺浸出茶油的准确率较高,压榨浓香茶油掺浸出茶油的定量鉴别效果要好于压榨原香茶油。 To solve the problem of quantitative prediction of pressed flavor Camellia oil adulterated with extracted Camellia oil, based on volatile components, the Partial Least Squares Regression(PLSR) model was constructed to quantitatively predict the pressed flavor(roasted/original) Camellia oil adulterated with extracted Camellia oil using Python language under high/low adulteration gradients. The results revealed that the average R2 and RMSE value of the PLSR model for quantitative prediction of pressed original/roasted Camellia oil adulterated with extracted Camellia oil reached 0.998 and 1.127/1.166 under high adulteration gradients, respectively, the relative error of most samples was concentrated between 0 and 0.1. The average R~2 and RMSE value of the PLSR model for quantitative prediction of pressed original/roasted Camellia oil adulterated with extracted Camellia oil was 0.956/0.999 and 0.592/0.094 under low adulteration gradients, respectively, the relative error of most samples was concentrated between 0~0.15/0~0.02.The PLSR model constructed in the present paper had higher accuracy in quantitative prediction of pressed flavor Camellia oil adulterated with extracted Camellia oil, and the quantitative prediction effect for roasted fragrant Camellia oil was better than that of original fragrant Camellia oil.
作者 孙婷婷 陈志清 钟瑾璟 刘剑波 任佳丽 钟海雁 周波 Sun Tingting;Chen Zhiqing;Zhong Jinjing;Liu Jianbo;Ren Jiali;Zhong Haiyan;Zhou Bo(Hunan Key Laboratory of Forestry Edible Sources Safety and Processing 1,Changsha 410004;School of Food Science and Engineering,Central South University of Forestry and Technology 2,Changsha 410004;Hyproca Nutrition Co.,Ltd.3,Changsha 410004;Food Inspection Institute of Yueyang Quality Measurement Inspection and Testing Center,Yueyang 414000)
出处 《中国粮油学报》 CAS CSCD 北大核心 2022年第12期251-258,共8页 Journal of the Chinese Cereals and Oils Association
基金 湖南省市场监督管理局科技计划项目(2020KJJH55) 湖南省林业科技创新基金项目(XLK202101-02) 中央引导地方科技发展专项资金区域创新体系建设专项(2020ZYQ036)。
关键词 挥发成分 定量预测 压榨风味茶油 浸出茶油 偏最小二乘回归模型 volatile components quantitative prediction flavor Camellia oil extracted Camellia oil partial least squares regression(PLSR)model
  • 相关文献

参考文献17

二级参考文献152

共引文献224

同被引文献21

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部