期刊文献+

基于时态软集的诺贝尔科学奖获奖数据分析

Data analysis of the Nobel Prizes in science based on temporal soft sets
下载PDF
导出
摘要 针对传统关联规则挖掘方法无法揭示特定时段内项集之间潜在联系的问题,提出一种基于时态软集和Apriori算法的关联规则挖掘算法。考虑经典软集的时态扩展结构,通过时态粒化映射诱导出数据集的粒化结构,构建时态软集及其Q-片段软集。基于时态软集建立描述和挖掘时态关联规则的基本框架,利用Q-片段软集提取特定时段内的数据,并借助所提算法挖掘促进型强时态关联规则,扩展软集理论在时态关联规则挖掘中的应用。对诺贝尔科学奖获奖数据的分析表明,所提方法可以提取出被传统方法忽略的某些强规则,挖掘出的时态关联规则有利于更客观地描述数据中隐藏的事实。 Potential connections between item sets during some specific periods can hardly be revealed with traditional association rule mining methods.To address this issue,a method based on temporal soft sets and the Apriori algorithm is developed to extract association rules.Considering the temporal extension structure of soft sets,the granular structure of a given data set is induced by virtue of temporal granulation mappings,and temporal soft sets with their Q-clip soft sets are constructed.Based on temporal soft sets,a fundamental framework for describing and mining temporal association rules is established.The data in specific periods can be captured by means of Q-clip soft sets.Strong temporal association rules are extracted with the proposed approach,which extends the application of soft sets in temporal association rule mining.The analysis of the award-winning data for the Nobel Prizes in science shows that the proposed method can extract some strong rules ignored by traditional methods,and the extracted temporal association rules are helpful for describing the facts hidden in the data more objectively.
作者 冯锋 雒静 王谦 肖昀泽 FENG Feng;LUO Jing;WANG Qian;XIAO Yunze(School of Science,Xi’an University of Posts and Telecommunications,Xi’an 710121,China;School of Communications and Information Engineering,Xi’an University of Posts and Telecommunications,Xi’an 710121,China;School of Economics and Management,Beijing University of Posts and Telecommunications,Beijing 100876,China)
出处 《西安邮电大学学报》 2022年第5期49-59,共11页 Journal of Xi’an University of Posts and Telecommunications
基金 陕西省自然科学基础研究计划项目(2018JM1054)。
关键词 时态软集 Q-片段软集 时态关联规则 数据挖掘 temporal soft set Q-clip soft set temporal association rule data mining
  • 相关文献

参考文献10

二级参考文献54

  • 1李敏,李春平.频繁模式挖掘算法分析和比较[J].计算机应用,2005,25(B12):166-171. 被引量:11
  • 2陈木法.谈谈概率论与其他学科的若干交叉[J].数学进展,2005,34(6):661-672. 被引量:11
  • 3胡吉明,鲜学丰.挖掘关联规则中Apriori算法的研究与改进[J].计算机技术与发展,2006,16(4):99-101. 被引量:59
  • 4张文修,徐宗本,梁怡,梁广锡.包含度理论[J].模糊系统与数学,1996,10(4):1-9. 被引量:49
  • 5Chen M S,Han J W,Yu P S. Data Mining: An Overview from a Database Perspective[ J]. IEEE Transactions on Knowledge and Data Engineering, 1996,8 (6) : 866 - 883.
  • 6Han J W,Kamber M. Data Mining Concepts and Techniques[ M]. Beijing: Higher Education Press,2001.
  • 7Agrawal R, Srikant R. Fast algorithms for mining association rules in large databases [ C ]. Proceedings of the 20th International Conference on Very Large Data Bases, September 1994.
  • 8Han E H, Karypis G, Kumar V. Scalable parallel data mining for association rules[ C ]. ACM SIGMOD International Conference on Management of Data, May, 1997.
  • 9Agrawa! R, Imielinski T, Swami A. Mining association rules between. sets of items in large databases[ C ]. Proceedings of the ACM SIGMOD International Conference on Management of Data ; May, 1993.
  • 10Wur S Y, Leu Y H. An effective Boolean algorithm for mining association rules in large databases [ C ]. Database Systems for Advanced Applications, 1999 : Proceedings, 6th International Conference, April, 1999:19 -21.

共引文献208

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部