期刊文献+

基于光谱成像和声学技术的水果成熟度无损检测系统设计 被引量:1

Design of Non-destructive Testing System for Fruit Ripeness Based on Spectral Imaging and Acoustic Technology
下载PDF
导出
摘要 水果成熟度的快速、无损与精确检测有助于水果的采摘、运输与存储,以此提高水果产业的经济效益.本文设计了一个紧凑、独立的光谱和声学结合的水果成熟度无损快速检测系统.该系统创造性地将光谱技术和声学技术相结合,针对不同精度的检测要求可以在同一装置上进行操作.该系统在采集数据以后借助人工智能技术,通过神经网络建立水果的成熟度检测模型,可以实现随时随地进行水果成熟度的快速无损检测. Rapid,non-destructive and accurate detection of fruit ripeness is helpful for fruit picking,transportation and storage,so as to improve the economic benefits of fruit industry.In this paper,a compact,independent spectral and acoustic combination of fruit ripeness non-destructive rapid detection system is designed.The system creatively combines spectral technology and acoustic technology,and can be operated on the same device for different accuracy detection requirements.After collecting data,the system uses artificial intelligence technology to establish a fruit ripeness detection model through neural network,which can realize rapid and non-destructive detection of fruit ripeness anytime and anywhere.
作者 杨帆 吕立新 YANG Fan;LU Li-Xin(Department of Information and Artificial Intelligence,Anhui Business College,Wuhu 241002,Anhui,China;College of Industrial Education,Technological University of the Philippines,Manila 0900,Philippines)
出处 《兰州文理学院学报(自然科学版)》 2023年第1期60-65,共6页 Journal of Lanzhou University of Arts and Science(Natural Sciences)
基金 安徽省教育厅高校优秀青年人才支持计划课题(gxyq2018236) 安徽省教育厅教学团队项目(2020jxtd093)。
关键词 光谱成像 声学技术 水果成熟度 无损检测 spectral imaging acoustic technology fruit ripeness non-destructive testing
  • 相关文献

参考文献4

二级参考文献54

  • 1王斌,薛建新,张淑娟.基于高光谱成像技术的腐烂、病害梨枣检测[J].农业机械学报,2013,44(S1):205-209. 被引量:22
  • 2孙素成.西瓜成熟度测定及适时收获的方法[J].安徽农学通报,2004,10(6):51-51. 被引量:2
  • 3张君萍,高疆生,李疆,何天明,张卫芳,徐林,樊国权.新疆杏与华北杏果实主要营养成分比较分析[J].新疆农业科学,2006,43(2):140-144. 被引量:52
  • 4杨丹,赵海滨,龙哲.MATLAB图像处理实例详解[M].北京:清华大学出版社,2013.
  • 5Elmasry G, Kamruzzaman M, Sun D W, et al. Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: A review[J]. Critical Reviews in FoodScience and Nutrition, 2012, 52(11): 999-1023.
  • 6Wu D, Sun D W. Advanced applications of hypersepctral imaging technology for food quality and safety analysis and assessment: A review-Part II: Applications[J]. Innovative Food Science and Emerging Technologies, 2013, 19: 15-28.
  • 7Rajkumar P, Wang N, Elmasry G, et al. Studies on banana fruit quality and maturity stages using hypersepctral imaging[J]. Journal of Food Engineering, 2012, 108(1): 194-200.
  • 8Menesatti P, Zanella A, D\'Andrea S, et al. Supervised multivariate analysis of hyper-spectral NIR images to evaluate the starch index of Apples[J]. Food and Bioprocess Technology, 2009, 2(3): 308-314.
  • 9Wei X, Liu F, Qiu Z, et al. Ripeness classification of astirngent persimmon using hyperspectral imaging technique[J]. Food and Bioprocess Technology, 2014, 7(5): 1371-1380.
  • 10Polder G, Van der Heijden G. CHAPTER 12-Measuring ripening of tomatoes using imaging spectrometry[M]. New York: Academic Press, 2010: 369-402.

共引文献64

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部