期刊文献+

面向目标情感分析的双重图注意力网络模型 被引量:1

Dual graph attention networks model for target sentiment analysis
下载PDF
导出
摘要 目标情感分析旨在分析评论文本中不同目标所对应的情感倾向。当前,基于图神经网络的方法使用依存句法树来融入依存句法关系,一方面,此类方法大多忽略了依存关系缺乏区分度的事实;另一方面,未考虑依存句法树提供的依存关系存在目标与情感词关系缺失的问题。为此,提出双重图注意力网络模型。该模型首先使用双向长短期记忆网络得到具有语义信息的词节点表示,然后根据依存句法树在词节点表示上构建句法图注意力网络,实现依存句法关系重要程度的区分,更有效地建立目标与情感词之间的关系,进而得到更准确的目标情感特征表示;同时根据句子的无向完全图构建全局图注意力网络来挖掘目标与情感词缺失的关系,进一步提升模型的性能。实验结果表明,与现有模型对比,双重图注意力网络模型在不同数据集上的准确率与宏平均F1值均取得了更好结果。 Target sentiment analysis aims to analyze the sentiment tendency corresponding to different targets in the review text.At present,graph neural network based methods use the dependency syntactic tree to incorporate dependency syntactic relations.On the one hand,these methods mostly ignore the fact that dependency relations lack distinction.On the other hand,without considering the dependency relations provided by the dependency syntactic tree,there is a lack of relations between target and sentiment words.Therefore,a dual graph attention network(DGAT)model is proposed.First,the model uses a bidirectional long short-term memory network to obtain word node representation with semantic information,and then constructs a syntactic graph attention network based on the word node representation according to the dependency syntactic tree,so as to distinguish the importance of dependency syntactic relations,more effectively establish the relation between target and sentiment words,and obtain a more accurate representation of target sentiment features.At the same time,according to the undirected complete graph of sentences,a global graph attention network is used to mine lacking relations between target and sentiment words,so as to further improve the performance of the model.Experimental results show that compared with existing models,the DGAT model has a better accuracy and macro-average F1 value on different datasets.
作者 崔少国 陈思奇 杜兴 CUI Shaoguo;CHEN Siqi;DU Xing(School of Computer and Information Science,Chongqing Normal University,Chongqing 401331,China)
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2023年第1期137-148,共12页 Journal of Xidian University
基金 国家自然科学基金(62003065) 教育部人文社科规划基金(22A10637019) 重庆市科技局项目(2022NSCQ-MSX2933,2022TFII-OFX0262,cstc2019jscx-mbdxX0061) 重庆市教委重点项目(KJZD-K202200510) 重庆市社会科学规划项目(2022NDYB119) 重庆师范大学基金项目(20XLB004)。
关键词 自然语言处理 目标情感分析 依存关系 图注意力网络 注意力机制 natural language processing target sentiment analysis dependency relations graph attention network attention mechanism
  • 相关文献

参考文献5

二级参考文献10

共引文献45

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部