期刊文献+

粘胶纤维的改性方法

Modification method of viscose fiber
下载PDF
导出
摘要 粘胶纤维改性作为改善纤维性能,赋予纤维功能性的方法,近年来受到了广泛关注。通过改性可以赋予粘胶纤维抗菌、阻燃、导电、高吸附、磁性、抗炎、止血等功能,拓展了粘胶纤维应用领域。本文对粘胶纤维功能化改性方法进行了介绍,包括化学法中的接枝共聚、原位合成、化学交联、氧化和醚化;物理法中的后整理、等离子体处理和共混;生物法中的酶处理等方法。讨论了功能性粘胶纤维的应用及发展潜力,以期为功能性纤维的研究及应用提供参考。 Viscose fiber is an important raw material in the textile industry and is widely used in textile, clothing, medical care, health care and other fields. In recent years, functional modification to endow viscose fiber with antibacterial, flame retardant, conductive, highly adsorptive, magnetic, anti-inflammatory, hemostatic functions, and and the like has received extensive attention.There are many methods involved in the modification of viscose fiber, including chemical, physical and biological methods. For example, grafting the intermediate substances acrylonitrile or acrylic acid on the surface of the viscose fiber, giving the viscose fiber flame retardancy through the reaction of nitrile group with hydrazine hydrate and zinc acetate, giving the viscose fiber adsorption of CO2through the reaction of nitrile group with triethylenetetramine, and giving the viscose fiber antibacterial properties by in-situ loading Ag nanoparticles on polyacrylic acid. It is also possible to oxidize hydroxyl groups to aldehyde groups generates radicals at the C-2 or C-3 positions, which in turn trigger graft copolymerization with the flame retardant component to impart flame retardancy to viscose fibers, etc. Loading Ag/Ag2CO3or Ag/Ag3PO4nanoparticles on the surface of the viscose fiber to give antibacterial activity and UV shielding properties to the viscose fiber;in-situ polymerization of polypyrrole on the surface of the viscose fiber to give electrical conductivity to the viscose fiber. Through crosslinking reaction to improve the physical strength of viscose fiber and reduce water absorption, etherification modification to improve the adsorption of dyes on viscose fiber, oxidation modification as a carrier or reaction site to introduce or load functional groups such as trypsin, zinc ions, magnetic nanoparticles, etc, to give anti-inflammatory, hemostatic, magnetic or other functions to viscose fiber.Physical modification of viscose fiber. Modified chitosan, flame retardant, titanium dioxide, copper sulfate, etc, loaded onto the viscose fabric through finishing to give the fabric anti-bacterial, anti-oxidant activity, flame retardancy or UV protection. Viscose fabric treated by dielectric barrier discharge(DBD) plasma, and then modified with silver ions and copper ions on the fabric, giving the fabric antibacterial activity. Functional substances mixed with viscose spinning liquid, by wet spinning to give viscose fiber antibacterial, anti-mildew, deodorant, anti-inflammatory, or mosquito repellent, flame retardant, anti-static, moisture absorption and heat, skin care, release of negative ions and far-infrared properties or other functions.Biological modification of viscose fiber. Such as using enzyme treatment to improve the adsorption capacity of viscose fiber to bacteria in aqueous suspension.The development of differentiated, functional, high-performance, green and environmentally friendly products is the main development trend of viscose fiber industry. The development of functional viscose fabrics will promote the application of viscose fibers in the fields of flame retardant fabrics, medical antibacterial fabrics, wearable electronic materials, functional clothing, wastewater treatment materials, anti-ultraviolet fabrics, photocatalytic materials, etc, which has broad market prospects.
作者 张俊奇 郭勇德 ZHANG Junqi;GUO Yongde(Xinlong Holding(Group)Co.,Ltd.,Chengmai 571924,China)
出处 《现代纺织技术》 北大核心 2023年第2期218-229,共12页 Advanced Textile Technology
关键词 粘胶纤维 改性 阻燃 抗菌 导电 viscose fiber modification antiflaming anti-bacteria conduction
  • 相关文献

参考文献15

二级参考文献62

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部