期刊文献+

静电纺丝碳纳米管基复合材料在传感器中的应用研究进展 被引量:4

Research progress of electrospun carbon nanotube-based composites in sensor applications
下载PDF
导出
摘要 碳纳米管(CNTs)是一种具有特殊结构的一维量子材料,由于其优异的电学、热学、化学和力学性能,以及在储能和能量转换装置、传感器、储氢介质等许多领域的潜在应用,吸引了各界的广泛关注。本文综述了近年来国内外通过静电纺丝技术制备碳纳米管基复合材料传感器的研究现状,主要介绍了生物传感器、柔性应变/压力传感器、电化学传感器、湿度传感器、气体化学传感器的研究进展,并对其未来的发展前景进行了展望。 In recent years, electrospinning carbon nanotubes have been widely used in biological, electrochemical, humidity, gas and other sensors. During the preparation of sensors, the electrodes and the sensitive resistors are modified to enhance the performance of sensors and accelerate the practical prospect of electrospun carbon nanotubes in sensors.At present, carbon nanotubes can be used to make capacitors, conductive films, sensors and touch screen materials. Because of their excellent properties, carbon nanotubes are widely used in precise and sensitive materials. As a pure substance composed of carbon elements, carbon nanotubes have volume effect, surface effect, macroscopic quantum tunnel and quantum effect. Adding carbon nanotubes into the sensor can modify the electrode, reduce the overpotential of redox and improve the detection sensitivity.Electrospun carbon nanotubes have the advantages of nanometer scale. Electrospinning makes the sensor structure miniaturized and integrated. 3D stacked nanofibers are used as hazard sensors, breathable nano grid sensors and intelligent wearable sensors. Different kinds of atoms can change the electronic structure and adsorption capacity of carbon nanotubes. When the carbon nanotube compounds with different kinds of polymers, the response characteristics of the sensor can be changed, and the recovery performance and sensitivity of the response can be improved. The high surface area of the carbon nanotube composite provides a large number of gas channels, which improves the sensitivity and response speed of sensors. The spiral structure and hollow structure can separate substances to simplify the detection steps. By fixing the protein probe on the carbon nanotubes and using fluorescence irradiation, we can quickly detect COVID-19.The technology research and development based on sensor materials and devices is the cornerstone of improving the development of the sensor field. It is proved that the ordered and complex nanofibers produced by electrospinning can provide sufficient biomolecule fixation sites, which has become a hot research topic in the sensor field. Carbon nanotubes are compounded with other materials by electrospinning, which improves the upper performance limit of sensor materials and broadens the development and application space of the sensor field in the future.With the development of artificial intelligence, Internet of things and other new technologies, new requirements for sensor materials and devices have been put forward. According to the development needs of sensors, people are trying to compound electrospun carbon nanotubes with more materials as the basic materials of sensors. It shows that it has great application potential in the sensor field. Although many research achievements have been accumulated in the preparation process and material composite methods of carbon nanotubes, there are still some challenges in the optimization of material combination, sensing performance and functional integration. Therefore, it is necessary to carry out more in-depth research on performance optimization and material combination to promote carbon nanotubes′ application in the field of sensors.
作者 杨海贞 马闯 魏肃桀 周泽林 田征坤 YANG Haizhen;MA Chuang;WEI Sujie;ZHOU Zelin;TIAN Zhengkun(School of Textiles,Zhongyuan University of Technology,Zhengzhou 450007,China)
出处 《现代纺织技术》 北大核心 2023年第2期256-268,共13页 Advanced Textile Technology
基金 河南省科技攻关项目(222102230065) 中原工学院青年人才创新能力基金项目(K2020QN003) 2022年河南省大学生创新创业训练计划项目(202210465036) 中原工学院2022年度大学生创新创业训练计划项目(202210465036)。
关键词 静电纺丝 传感器 碳纳米管 复合材料 electrospinning sensors carbon nanotubes composites
  • 相关文献

参考文献5

二级参考文献24

共引文献18

同被引文献34

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部