期刊文献+

中国城市网络结构及其影响因素——基于上市公司联系的视角

China's Urban Network Structure and Its Influencing Factors——From the Perspective of Listed Company Linkage
下载PDF
导出
摘要 基于2000、2008、2016、2020年的上市公司联系数据,运用社会网络分析法和二次指派程序研究中国城市网络结构及其影响因素:第一,北京、上海以及深圳是中国城市网络中最为重要的核心城市,中心度及连接强度位列前三,且在观察期内一直处于核心区;第二,中国城市网络存在核心—边缘结构,核心区城市联系十分紧密,边缘区的城市联系松散;第三,城市整体网络具有一定的向心性,但凝聚力不强,结构较为松散,珠三角、长三角、京津冀三个城市群内的网络联系比整体网络要强;第四,影响城市网络关联强度因素显示,行政权力、城市地理位置、城市地理邻近对城市网络关联度具有显著正向影响,而人均地区生产总值、政府教育投入、政府科技研发投入的差异对城市网络关联强度具有显著负向影响,差异越小关联度越强。 Based on the data of listed company linkage in 2000,2008,2016 and 2020,social network analysis and quadratic assignment procedure are used to study China's urban network structure and its influencing factors.Firstly,Beijing,Shanghai and Shenzhen are the most important core cities in China's urban network,ranking among the top three in centrality and connection strength,and having been in the core area during the observation period.Secondly,China's urban network shows a core-periphery structure:cities in the core area are closely connected while cities in the periphery are loosely connected.Thirdly,the overall urban network has a certain centripetal nature,but the cohesion is not strong,the structure is relatively loose,and the network connections in the three urban agglomerations of the Pearl River Delta,Yangtze River Delta and Beijing-Tianjin-Hebei are stronger than the overall network.Fourthly,the study on the factors that affect the connection strength of urban networks shows that administrative power,geographical location and geographical proximity have a significant positive effect.However,the per capita GRP,government education investment,and government scientific research and development have a significant negative impact,and the smaller the differences in these fields are,the stronger the connection is.
作者 潘丽群 罗琦 Pan Liqun;Luo Qi(School of Economics and Statistics,Guangzhou University,Guangzhou,Guangdong 510006)
出处 《嘉兴学院学报》 2023年第2期70-77,109,共9页 Journal of Jiaxing University
基金 教育部人文社会科学研究青年项目(18YJC790122) 国家自然科学基金青年项目(72003052) 广东省自然科学基金面上项目(2022A1515012089)。
关键词 城市网络结构 上市公司 社会网络分析 二次指派程序 影响因素 urban network structure listed companies social network analysis quadratic assignment procedure influencing factors
  • 相关文献

参考文献13

二级参考文献224

共引文献387

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部