期刊文献+

Evaluation of freezing state of sandstone using ultrasonic time-frequency characteristics

下载PDF
导出
摘要 Common problems in engineering projects that involve artificial ground freezing of soil or rock include inadequate thickness,strength and continuity of artificial frozen walls.It is difficult to evaluate the freezing state using only a few thermometer holes at fixed positions or with other existing approaches.Here we report a novel experimental design that investigates changes in ultrasonic properties(received waveform,wave velocity V_(p),wave amplitude,frequency spectrum,centroid frequency f_(c),kurtosis of the frequency spectrum KFS,and quality factor Q)measured during upward freezing,compared with those during uniform freezing,in order to determine the freezing state in 150 mm cubic blocks of Ardingly sandstone.Water content,porosity and density were estimated during upward freezing to ascertain water migration and changes of porosity and density at different stages.The period of receiving the wave increased substantially and coda waves changed from loose to compact during both upward and uniform freezing.The trend of increasing V_(p) can be divided into three stages during uniform freezing.During upward freezing,V_(p) increased more or less uniformly.The frequency spectrum could be used as a convenient and rapid method to identify different freezing states of sandstone(unfrozen,upward frozen,and uniformly frozen).The continuous changes in reflection coefficient r_(φ),refraction coefficient t_(φ) and acoustic impedance field are the major reason for larger reflection and refraction during upward freezing compared with uniform freezing.Wave velocity V_(p),wave amplitude A_(h),centroid frequency f_(c) and quality factor Q were adopted as ultrasonic parameters to evaluate quantitatively the temperature T of uniformly frozen sandstone,and their application within a radar chart is recommended.Determination of V_(p) provides a convenient method to evaluate the freezing state and calculate the cryofront height and frozen section thickness of upward frozen sandstone,with accuracies of 73.37%-99.23%.
出处 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第3期584-599,共16页 岩石力学与岩土工程学报(英文版)
基金 supported by the National Natural Science Foundation of China(Grant Nos.51804157,51774183,and 11702094) the University of Sussex,UK.Both are gratefully acknowledged.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部