期刊文献+

基于NGN和5G的档案管理系统研究与仿真

Research and Simulation of Archives Management System Based on NGN and 5G
下载PDF
导出
摘要 为了提高海量档案高维特征的超大数据集管理及分析效率,在研究了NGN、5G网络、多核SVM等相关理论及概念基础上,设计了一种智能档案管理系统。该架构按层级可分为应用层、控制层和基础设施层,系统协调作用实现了高效地档案数据管理及分析功能。其中,提出了一种混合数据分析方法以提高数据分析效率。从大规模的未标记数据集中选择具有代表性的实例,以减少标记工作和训练时间,实现了不损失精度情况下提高数据分析效率。通过仿真及分析,与传统SVM方法相比,在不明显降低准确率情况下,提出的方法只需要标记一小部分代表性的训练实例可完成训练过程。 In order to improve the efficiency of large data set management and analyze of high-dimensional features of massive archives, based on the research of NGN, 5G network, multi-core SVM and other related theories and concepts, this paper designs an intelligent archives management system. The architecture can be divided into application layer, control layer and infrastructure layer. The coordination function realizes the efficient file data management and analysis function. In order to improve the efficiency of data analysis, a hybrid data analysis method is proposed, it selects representative examples from large-scale unlabeled data sets to reduce the marking work and training time, and improves the efficiency of data analysis without losing accuracy. Through simulation and analysis, compared with the traditional SVM method, this method only needs to mark a small number of representative training examples to complete the training process without significantly reducing the accuracy.
作者 鲜娅静 XIAN Yajing(Discipline Inspection Commission,Xi’an Medical University,Xi’an 710021,China)
机构地区 西安医学院
出处 《微型电脑应用》 2023年第2期161-163,168,共4页 Microcomputer Applications
关键词 档案管理与分析 下一代网络 5G通信 多核SVM archives management and analysis next generation network 5G multi-core SVM
  • 相关文献

参考文献12

二级参考文献81

  • 1曹龄兮,李建华,娄悦.基于TCP友好控制机制的VoIP QoS研究[J].计算机应用,2006,26(9):2196-2198. 被引量:2
  • 2李红,冯庆胜,邵迎春.基于软交换技术的本地网组建[J].计算机工程与设计,2006,27(24):4781-4783. 被引量:3
  • 3彭京,杨冬青,唐世渭,付艳,蒋汉奎.一种基于语义内积空间模型的文本聚类算法[J].计算机学报,2007,30(8):1354-1363. 被引量:44
  • 4杨冬权.关于随馆藏数量增加而相应增加各级国家档案馆人员编制的提案[N].中国档案报,2013-03-07(1).
  • 5Xu Z L, Jin R, Zhu S H, Lyu M R, King I. Smooth optimization for effective multiple kernel learning. In: Proceedings of the 24th the Association for the Advancement of Artificial Intelligence. California, America: AAAI, 2010. 543-549.
  • 6Sonnenburg S, R?tsch G, Sch?fer C, Sch?lkopf B. Large scale multiple kernel learning. Journal of Machine Learning Research, 2006, 7(1): 1531-1565.
  • 7Bach F R, Lanckriet G R G, Jordan M I. Multiple kernel learning, conic duality, and the SMO algorithm. In: Proceedings of the 21st International Conference Machine Learning. New York, USA: ACM, 2004. 6-13.
  • 8Xu Z L, Jin R, Yang H Q, King I, Lyu M R. Simple and efficient multiple kernel learning by group lasso. In: Proceedings of the 2010 International Conference Machine Learning. Haifa, Israel: ICML, 2010. 1-8.
  • 9Duan L X, Tsang I W, Xu D. Domain transfer multiple kernel learning. IEEE Transactions on Pattern Analysis Machine Intelligence, 2012, 34(3): 123-131.
  • 10Wang Z, Chen S C, Sun T K. MultiK-MHKS: a novel multiple kernel learning algorithm. IEEE Transactions on Pattern Analysis Machine Intelligence, 2008, 30(2): 12-18.

共引文献521

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部