期刊文献+

Soft-HGRNs:soft hierarchical graph recurrent networks for multi-agent partially observable environments

原文传递
导出
摘要 The recent progress in multi-agent deep reinforcement learning(MADRL)makes it more practical in real-world tasks,but its relatively poor scalability and the partially observable constraint raise more challenges for its performance and deployment.Based on our intuitive observation that human society could be regarded as a large-scale partially observable environment,where everyone has the functions of communicating with neighbors and remembering his/her own experience,we propose a novel network structure called the hierarchical graph recurrent network(HGRN)for multi-agent cooperation under partial observability.Specifically,we construct the multiagent system as a graph,use a novel graph convolution structure to achieve communication between heterogeneous neighboring agents,and adopt a recurrent unit to enable agents to record historical information.To encourage exploration and improve robustness,we design a maximum-entropy learning method that can learn stochastic policies of a configurable target action entropy.Based on the above technologies,we propose a value-based MADRL algorithm called Soft-HGRN and its actor-critic variant called SAC-HGRN.Experimental results based on three homogeneous tasks and one heterogeneous environment not only show that our approach achieves clear improvements compared with four MADRL baselines,but also demonstrate the interpretability,scalability,and transferability of the proposed model.
出处 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2023年第1期117-130,共14页 信息与电子工程前沿(英文版)
基金 Project supported by the National Key R&D Program of China(No.2018AAA010230)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部