期刊文献+

基于多维综合交通图谱的高速公路拥堵蔓延消散预测模型研究 被引量:2

Prediction Model of Expressway Congestion Spread and Dissipation based on Multi-dimensional Comprehensive Traffic Patterns
原文传递
导出
摘要 随着经济的高速发展,我国高速公路交通量急剧增加,交通出行在时间和空间上的分布不均导致高速公路交通拥堵频发。对于道路管理者而言,简单的新建道路或道路升级改造无法解决高速公路拥堵的难题,需要着眼于对交通出行的合理引导。分析高速公路交通拥堵影响的时空规律,有利于科学引导公众交通出行,进而提升交通系统运行效率,满足交通管理者管理优化需求。因此,提出一种基于多维综合交通图谱的拥堵蔓延消散预测模型。模型通过聚类道路历史交通量数据生成交通图谱,进而识别预测路段的动态交通量,最终基于预测交通量,建立拥堵蔓延消散模型,实现对拥堵蔓延消散过程的定量评估。以北京市京开高速公路玉泉营桥至菜户营南路北向南方向高速公路路段为例,验证拥堵蔓延消散模型的有效性。结果表明:将路段的动态交通量预测结果作为交通波模型的历史交通量输入,可有效预测路段拥堵蔓延传播速度,模型平均预测准确性可达88.04%。该模型可有效应用于交通诱导等交通管制措施,促进道路交通流合理分配。 With the rapid development of national economy, the traffic volume of expressways increases dramatically in China. The uneven distribution of travel volume in time and space leads to frequent traffic congestion on expressways. For road management authority, simply building new roads or upgrading roads cannot solve such problem, and it is necessary to focus on the reasonable guidance of traffic travel. Analysis of the temporal and spatial law of the impact of highway traffic congestion is helpful to scientific guidance of people’s travel, thus improving the efficiency of transportation system and meeting the needs of stake holders for management optimization. Therefore, in this paper a congestion spread and dissipation forecasting model is proposed according to the comprehensive traffic patterns. By clustering road history traffic flow data, the traffic patterns are recognized, and then forecast is conducted to identify dynamic traffic route. Finally based on the forecast traffic volume, congestion spread and dissipation model is developed and implement quantitative evaluation of the spread of congestion dissipation process. In this paper, the validity of the congestion spread and dissipation model is verified relying on the section of the Beijing-Kaifeng expressway from Yuquanying Bridge to Caihuying South Road. The results show that the prediction results of dynamic traffic volume can be used as the historical traffic volume of the traffic wave model to predict the spread and propagation speed of traffic congestion. The average prediction accuracy of the model can reach 88.04%. The model can be effectively applied to traffic control measures such as traffic guidance to promote rational distribution of road traffic flow.
作者 熊伟峰 顾思思 刘安 杨璐 XIONG Wei-feng;DU Si-si;LIU An;YANG Lu(Jiangxi Provincial Communications Investment Group Co.Ltd,Nanchang 330025,China;CCCC Highway Consultants Co.Ltd.,Beijing 100010,China;Jiangxi Communications Construction Company Limited,Nanchang 330108,China)
出处 《公路》 北大核心 2023年第2期371-378,共8页 Highway
基金 江西祁婺高速智慧交通设计专题研究项目,项目编号K21008AK。
关键词 交通工程 交通流 拥堵蔓延 拥堵消散 交通图谱 模式聚类 交通量预测 traffic engineering traffic flow congestion spread congestion dissipation traffic patterns mode clustering traffic flow forecast
  • 相关文献

参考文献6

二级参考文献60

  • 1胡家兴,陈燕,张立东.基于混沌神经网络的交通流预测算法[J].济南大学学报(自然科学版),2012,26(2):152-155. 被引量:6
  • 2赵风波,孙敏.基于模糊聚类分析的交通状态识别方法[J].微型电脑应用,2006,22(2):9-11. 被引量:17
  • 3张和生,张毅,胡东成,王明军.区域交通状态分析的时空分层模型[J].清华大学学报(自然科学版),2007,47(1):157-160. 被引量:30
  • 4Dougherty M S,et al. Short-term inter-urban traffic forecasts using neural network[J]. International Journal of Fore- casting,1997,(13):21~31.
  • 5Kirby H R,et al. Should we use neural networks or statistical models for short-term motorway traffic forecasting?[J]. International Journal of Forecasting,1997,(13):43~50.
  • 6Smith B L,et al. Comparison of parametric and nonparametric models for traffic flow forecasting[J]. Transportation Research(Part C),2002,(10):309~321.
  • 7HaykinS.Neural networks - a comprehensive foundation(second edition)[M].北京:清华大学出版社,2002..
  • 8Van Arem B, et al. Recent advances and applications in the field of short-term traffic flow forecasting[J]. Interna- tional Journal of Forecasting,1997,(13):1~12.
  • 9姚智胜,邵春福.基于状态空间模型的道路交通状态多点时间序列预测[J].中国公路学报,2007,20(4):113-117. 被引量:24
  • 10Wardrop J G. Some theoretical aspects of road traffic re- search[J]. Proceeding of the Institution of Civil Engi- neer, 1952,1 ( 3 ) :325-362.

共引文献66

同被引文献10

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部