摘要
在已有研究工作的基础上,提出了一类时滞SEIR埃博拉病毒传播模型.以感染者的恢复周期时滞为分岔参数,通过对模型相应特征方程根的分布情况进行讨论,推导出时滞SEIR埃博拉病毒传播模型局部渐近稳定和产生Hopf分岔的充分条件.最后通过计算机数值仿真验证了所得结果的正确性.研究结果表明,感染者的恢复周期时滞对模型的稳定性有着重要的影响,感染者恢复越快,越有利于埃博拉病毒传播的控制,反之,将不利于埃博拉病毒的传播控制.该研究结果,是对已有研究工作的适当补充.
Based on the current research work, a delayed SEIR Ebola virus propagation model is investigated in this paper.Sufficient conditions for local asymptotic stability and occurrence of Hopf bifurcation of the delayed SEIR Ebola virus propagation model are derived by taking the time delay due to recovered period of the infectious populations as bifurcation parameter and discussing the distribution of the roots of the associated characteristic equation.Finally, the correctness of the obtained results is verified through computer numerical simulation.The research results show that the time delay due to the recovered period of the infectious populations has an important impact on the stability of the model.The faster the infectious populations recover, the more conducive to the control of Ebola virus transmission.Otherwise, it will be detrimental to the control of Ebola virus transmission.The obtained results of this study are an appropriate supplement to the current research work.
作者
张子振
张怡雪
ZHANG Zizhen;ZHANG Yixue(School of Management Science and Engineering,Anhui University of Finance and Economics,Bengbu 233030,China)
出处
《渤海大学学报(自然科学版)》
CAS
2022年第4期336-341,共6页
Journal of Bohai University:Natural Science Edition
基金
国家自然科学基金项目(No:12001001)
安徽省自然科学基金项目(No:2008085QA09)
教育部人文社会科学研究项目(No:21YJAZH08)。