期刊文献+

LncRNA-疾病关联预测方法研究

Research on LncRNA-disease Association Prediction Method
下载PDF
导出
摘要 越来越多的生物实验证实,长链非编码RNA(lncRNA)的功能异常与多种人类复杂疾病的发生具有明显关联。传统实验方法验证lncRNA-疾病关联费时费力,利用现有生物实验数据,通过计算方法预测lncRNA-疾病关联,可为生物实验设计提供重要参考,具有重要现实意义。本文对当前主流lncRNA-疾病关联预测的计算方法进行综述,总结各类方法的优点和不足,并展望后续模型的开发。 More and more biological experiments have confirmed that the dysfunction of long non-coding RNA(lncRNA)is significantly associated with the occurrence of various human complex diseases.It is time-consuming and laborious to verify the lncRNA-disease association by traditional experimental methods.Using the existing biological experimental data and predicting the lncRNA-disease association by calculation methods can provide an important reference for biological experiment design,which has important practical significance.This article reviews the current mainstream lncRNA-disease association prediction methods,summarizes the advantages and disadvantages of various methods,and looks forward to the development of subsequent models..
作者 富坤 李佳宁 FU Kun;LI Jia-ning(School of Artificial Intelligence and Data Science,Hebei University of Technology,Tianjin 300401,China)
出处 《医学信息》 2023年第4期166-169,174,共5页 Journal of Medical Information
基金 国家自然科学基金资助项目(编号:62072154)。
关键词 长链非编码RNA lncRNA-疾病关联预测 生物信息网络 机器学习 深度学习 Long non-coding RNA LncRNA-disease association predicting Biological information network Machine learning Deep learning
  • 相关文献

参考文献6

二级参考文献7

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部