摘要
为实现气缸排气回收再利用,提出气动执行器排气利用系统。根据系统工作过程,利用能量方程、气体状态方程等建立气动执行器排气利用系统基础特性模型。将基础特性模型转换为无因次模型,使用MATLAB/Simulink工具对无因次模型进行仿真,并分析了影响排气再利用效率的主要参数。结果表明:排气再利用效率主要由供气气罐无因次体积、无因次进气口有效面积、无因次有杆腔面积及无因次固有周期决定,影响率分别为30.45%,17.44%,13.55%,13.21%;对确定的气动执行器系统,可以通过增大供气气罐供气压力、减小供气切换判据来提高再利用效率。
In order to realize cylinder exhaust recovery and reuse,propose a pneumatic actuator exhaust utilization system.According to the working process of the system,use the energy equation,gas state equation and other equations to establish the basic characteristic model of the pneumatic actuator exhaust utilization system.Transform the underlying feature model to a dimensionless model,and use MATLAB/Simulink tools to simulate dimensionless models,and analyze the main parameters that affect the efficiency of exhaust gas reuse.The simulation results show that the exhaust recycling efficiency is mainly determined by the dimensionless volume of the gas supply tank,the effective area of the dimensionless air inlet,the area of the dimensionless rod cavity and the dimensionless natural period,and the influence rates are 30.45%,17.44%,13.55%and 13.21%,respectively.For certain pneumatic actuator systems,the reuse efficiency can be improved by increasing the air supply pressure of the air supply tank and reducing the air supply switching criterion.
作者
虞启辉
李奉奇
张立从
耿延歧
谭心
张业明
YU Qi-hui;LI Feng-qi;ZHANG Li-cong;GENG Yan-qi;TAN Xin;ZHANG Ye-ming(School of Mechanical Engineering,Inner Mongolia University of Science&Technology,Baotou,Inner Mongolia 014010;State Key Laboratory of Fluid Power and Electromechanical Systems,Hangzhou,Zhejiang 310027;Beijing Key Laboratory of Pneumatic Thermal Energy Storage and Energy Supply Technology,Beijing 100191;School of Mechanical and Power Engineering,Henan Polytechnic University,Jiaozuo,Henan 454000)
出处
《液压与气动》
北大核心
2023年第3期28-36,共9页
Chinese Hydraulics & Pneumatics
基金
国家自然科学基金(52065054)
流体动力与机电系统国家重点实验室开放基金(GZKF-202016)
北京高等学校卓越青年科学家计划(BJJWZYJH01201910006021)。
关键词
气动
排气再利用
无因次仿真
效率
影响率
pneumatic
exhaust reuse
dimensionless simulation
efficiency
impact rate