摘要
为了提升流媒体视频的帧率,解决视频插帧算法模型复杂的问题,提出了一种基于光流估计的轻量级视频插帧算法,简称SKFEVI算法。该算法只需进行一次光流估计,即可计算出两个视频帧的中间流信息,提升了中间流的估计速度,并在此基础上引入注意力机制进行特征融合,让模型对生成不同尺度特征的信息进行整合,增强了特征表达能力,提升了信息处理效率。实验结果表明,该算法的PSRN值提升至35.56 dB,SSIM值提升至0.978,合成的中间帧质量更好,流媒体视频播放更加流畅。
In order to improve the frame rate of streaming video and solve the problem of complex video interpolation algorithm model,a lightweight video frame interpolation algorithm based on optical flow estimation,referred to as SKFEVI,was proposed.The algorithm only needs to perform optical flow estimation once to calculate the intermediate stream information of two video frames directly,which improves the estimation speed of the intermediate stream,and on this basis,the attention(SKNet)mechanism was introduced for feature fusion,which enabled the model to integrate the feature information generated at different scales,enhanced the ability of feature expression and improves the efficiency of information processing.The experimental results show that the PSRN value and the SSIM value of the algorithm is increased to 35.56 dB and 0.978 respectively.The quality of the synthesized intermediate frame is better,which makes the streaming video play more smoothly.
作者
杨华
王姣
张维君
吴杰宏
高利军
YANG Hua;WANG Jiao;ZHANG Wei-jun;WU Jie-hong;GAO Li-jun(College of Computer Science,Shenyang Aerospace University,Shenyang 110136,China)
出处
《沈阳航空航天大学学报》
2022年第6期57-64,共8页
Journal of Shenyang Aerospace University
基金
航空科学基金(项目编号:2018ZC54013)
辽宁省教育厅科学技术研究项目(项目编号:L201626)
辽宁省自然科学基金(项目编号:2019-ZD-0243)。
关键词
视频帧率
光流估计
注意力机制
特征融合
视频插帧
video frame rate
optical flow estimation
attention mechanism
aeature fusion
video frame interpolation