期刊文献+

铝合金薄板冲压成形工艺优化及偏差补偿研究 被引量:4

Study on the optimization of stamping process and deviation compensation for aluminum alloy sheet
下载PDF
导出
摘要 针对铝合金冲压成形回弹严重的现象,利用Dynaform软件对铝合金S形件拉延成形和回弹进行数值模拟和回弹控制研究。分析不同工艺参数下对成形件的回弹影响,采用正交试验分析工艺参数对回弹的影响程度;选择正交试验样本及在工艺参数范围内随机选取样本,按照训练样本和检验样本比5:1建立BP神经网络回弹预测模型,将预测模型作为遗传函数适应度函数,全局搜索最优解及对应的最优工艺参数组合。最后,采用最优工艺参数组合,以控制系统传递函数、傅里叶变换为理论基础对初始模具型面进行回弹补偿修正,经验证,最大回弹量降至0.24mm。研究结果表明,通过对工艺参数优化结合模具型面补偿修正,铝合金冲压成形回弹量得到有效控制。 In view of the serious springback phenomenon of aluminum alloy stamping forming,the numerical simulation and springback control of aluminum alloy S-shaped part drawing forming and springback have been studied by use of Dynaform software.The influence of different process parameters on springback of formed parts has been analyzed,and the influence degree of process parameters on springback has been analyzed by orthogonal test;the orthogonal test samples have been selected randomly within the range of process parameters.The BP neural network rebound prediction model has been established according to the ratio of training samples to test samples 5:1.Taking the prediction model as the fitness function of the genetic function,the optimal solution and the corresponding optimal combination of process parameters have been searched globally.Finally,by using the optimal combination of process parameters,based on the control system transfer function and Fourier transform,the initial die surface has been corrected by rebound compensation.After verification,the maximum rebound has been reduced to 0.24mm.The results show that the springback of aluminum alloy stamping can be effectively controlled by optimizing the process parameters and compensating the die surface.
作者 黄辉琼 项辉宇 冷崇杰 姜文正 HUANG Huiqiong;XIANG Huiyu;LENG Chongjie;JIANG Wenzheng(School of Artificial Intelligence,Beijing Technology and Business University,Beijing 100048,China)
出处 《锻压装备与制造技术》 2023年第1期73-80,共8页 China Metalforming Equipment & Manufacturing Technology
关键词 拉延成形 工艺参数 神经网络 遗传算法 模具补偿 Drawing forming Process parameters Neural network Genetic algorithm Die compensation
  • 相关文献

参考文献10

二级参考文献80

共引文献70

同被引文献29

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部