期刊文献+

风电机组故障知识的获取表达与推理框架 被引量:5

Acquisition,expression and reasoning framework of wind turbine fault knowledge
下载PDF
导出
摘要 针对目前风电机组故障种类多、故障知识关联关系复杂、知识表达差异化大、知识推理效率低等问题,提出了风电机组故障知识的获取表达与推理框架。首先,通过基于故障树分析方法的故障模式及影响分析方法,全面获取并梳理出风电机组故障排查与检修维护的专家知识;然后,借助本体理论将非结构化的专家知识进行结构化表达,形成知识图谱,将知识可视化展示;同时,结合本体自定义规则以及因果推理模型实现故障原因的查询推理,提高了知识查询与推理的效率;最后,通过具体的机组故障案例说明了本方法的实用性。研究结果可为风电场运维检修工作的智能化发展提供方向。 Aiming at solving the problems of large number of wind turbine faults, complex fault knowledge relationship, large difference of knowledge expression and low efficiency of knowledge reasoning, a framework of acquisition, expression and reasoning of wind turbine fault knowledge is proposed. Firstly, through the failure mode and effect analysis method based on the fault tree analysis method, the expert knowledge of wind turbine trouble shooting and maintenance is comprehensively obtained and sorted out. Then, with the help of ontology theory,unstructured expert knowledge is expressed structurally to form a knowledge map and displayed visually. Combined with self-defined rules of ontology and causal reasoning model, the query and reasoning of fault causes are realized,which improves the efficiency of knowledge query and reasoning. Finally, the practicability of this method is illustrated by a specific unit fault case. The results of this study can provide a direction for the intelligent development of wind farm’s operation and maintenance.
作者 朱俊杰 任鑫 郝延 杨立平 杨奎 强威威 董玉亮 祝金涛 ZHU Junjie;REN Xin;HAO Yan;YANG Liping;YANG Kui;QIANG Weiwei;DONG Yuliang;ZHU Jintao(China Huaneng Clean Energy Research Institute Co.,Ltd.,Beijing 102209,China;Huaneng Jiuquan Wind Power Co.,Ltd.,Jiuquan 735100,China;Key Lab of Condition Monitoring and Control for Power Plant Equipment Ministry of Education,North China Electric Power University,Beijing 102206,China)
出处 《热力发电》 CAS CSCD 北大核心 2023年第3期73-80,共8页 Thermal Power Generation
基金 中国华能集团有限公司横向项目(CERI/TO-CA-003-21E)。
关键词 风电机组 知识获取 知识表达与推理 检修维护 wind turbine unit knowledge acquisition knowledge expression and reasoning overhaul and maintenance
  • 相关文献

参考文献3

二级参考文献27

  • 1李再华,刘明昆.电力系统故障的智能诊断综述[J].电气技术,2010,11(8):21-24. 被引量:21
  • 2刘培奇,李增智,赵银亮.扩展产生式规则的网络故障诊断专家系统[J].西安交通大学学报,2004,38(8):783-786. 被引量:15
  • 3刘青志,周绍磊,沐阿华.基于ANN的组合智能故障诊断专家系统的设计[J].计算机测量与控制,2004,12(7):613-615. 被引量:9
  • 4毕天姝,倪以信,吴复立,杨奇逊.基于径向基函数神经网络和模糊控制系统的电网故障诊断新方法[J].中国电机工程学报,2005,25(14):12-18. 被引量:41
  • 5蒋东翔 黄乾 洪良友等.风力发电机组振动监测与智能诊断系统开发.振动与冲击,2008,27:113-115.
  • 6邹荣贵 蒋东翔 黄乾等.风力发电机组常见故障机理分析.振动与冲击,2008,27:120-122.
  • 7ANAND PILLAY, J1N WANG. Modified failure mode and effects analysis using approximate reasoning [J]. Reliability Engineering and System Safety,2003, 79:69-85.
  • 8KWAI SANG CHIN,YING-MING WANG, GARY KA KWAI POON,et al. Risk evaluation in failure mode and effects analysis using fuzzy weighted geometric mean[J]. Expert Systems with Applications,2009,36:1195- 1207.
  • 9Mladen K,Ren Zhifang,Goran L,et al.Automated monitoring and analysis of circuit breaker operation[J].IEEE Transactions on Power Delivery,2005,20(3):1910-1918.
  • 10Zhang Ruijun,Chen Dingfang,Li Yu.A fuzzy expert system based on reconstructable neural networks and its application[C].Third International Conference on Information Technology and Applications,Sydney,Australia,2005,1(4-7):391-394.

共引文献105

同被引文献179

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部