期刊文献+

基于作动器非线性的主动悬架减振性能研究 被引量:2

Research on the Damping Performance of Active Suspension Based on Actuator Nonlinearity
下载PDF
导出
摘要 针对电磁主动悬架中直线作动器非线性特性对车辆减振性能产生影响的问题,采用麦克斯韦应力张量法建立输入电流与输出电磁力的非线性解析模型。通过拟合作动器非线性力的办法将解析模型中多结构参数问题缩减到二维,再将作动器拟合模型应用到采用LQG控制器的1/4车辆悬架模型中,研究作动器非线性对车辆减振性能的影响。结果表明:作动器的非线性使LQG控制效果变差,实际减振性能降低;作动器结构参数中极对数与初级定子长度的比值接近车辆共振频率时,减振性能最差。 Aiming at the problem that the nonlinear characteristics of linear actuators in electromagnetic active suspensions affect the vehicle’s damping performance,the Maxwell stress tensor method was used to establish a nonlinear analytical model of input current and output electromagnetic force.By simulating the nonlinear force of the actuator,the problem of multiple structural parameters in the analytical model was reduced to two dimensions,and then the actuator fitting model was applied to the 1/4 vehicle suspension model by using the LQG controller,the impact of the nonlinearity of the actuator on the vibration damping performance of the vehicle was studied.The results show that the nonlinearity of the actuator makes the LQG control effect worse,and the actual damping performance decreases;when the ratio of the number of pole pairs to the length of the primary stator in the structural parameters of the actuator is close to the vehicle resonance frequency,the vibration damping performance is the worst.
作者 卢小凯 王念先 LU Xiaokai;WANG Nianxian(School of Machinery and Automation,Wuhan University of Science and Technology,Wuhan Hubei 430081,China;The Key Laboratory for Metallurgical Equipment and Control of Ministry of Education,Wuhan University of Science and Technology,Wuhan Hubei 430081,China)
出处 《机床与液压》 北大核心 2023年第4期42-47,共6页 Machine Tool & Hydraulics
关键词 电磁主动悬架 直线作动器 作动器非线性 Electromagnetic active suspension Linear actuator Actuator nonlinearity
  • 相关文献

参考文献4

二级参考文献38

  • 1夏存良,宁国宝.轮边驱动电动车大质量电动轮垂向振动负效应主动控制[J].中国工程机械学报,2006,4(1):31-34. 被引量:21
  • 2喻凡,曹民,郑雪春.能量回馈式车辆主动悬架的可行性研究[J].振动与冲击,2005,24(4):27-30. 被引量:54
  • 3宁国宝,万钢.轮边驱动系统对车辆垂向性能影响的研究现状[J].汽车技术,2007(3):21-25. 被引量:42
  • 4MATSUSHITA H, NORITSUGU T, WADA T. Optimal control of active air suspension[J]. Transactions of the Japan Society of Mechanical Engineers, Part C, 1990, 526: 1499-1504.
  • 5TETSUYA L, YOSUKE A, KENROU T, et al. Development of a hydraulic active suspension[R]. SAE, 931971, 1993.
  • 6KIM Y, HWANG W, KEE C, et al. Active vibration control of a suspension system using an electromagnetic damper[J]. Proc. Instn. Mech. Engrs., 2001, 215: 865-873.
  • 7YASUHIRO K, YOSHIHIRO S, HIROFUMI I, et al. Modeling of electromagnetic damper for automobile suspension[J]. Journal of System Design and Dynamics, 2007, 1(3): 524-535.
  • 8RYBA D. Semi-active damping with an electromagnetic force generator[J]. Vehicle System Dynamics, 1993, 22: 79-95.
  • 9MIRZAEI S, SAGHAIAIANNEJAD S, TAHANI V, et al. Electromagnetic shock absorber[C]//Electric Machines and Drives Conference, IEEE International, Boston, USA, 2001- 760-764.
  • 10ANTONIN S, KATERINA H, JAROSLAV H, et al. Energy recuperation in automotive active suspension systems with linear electric motor[C]//2007 Mediterranean Conference on Control and Automation, 2007, July 27-29, 2007: 1-5.

共引文献51

同被引文献10

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部