期刊文献+

本期导读

下载PDF
导出
摘要 船舶航行交通事件检测依赖基于历史数据的离线检测方法,检测模型适用性差,难以满足监管人员的实时监测需求。通过分析船舶异常行为检测、航行事故检测等现有交通事件检测技术,可以发现:在数据层面,监测数据来源单一、环境信息缺失;在方法层面,基于统计、风险评估等经典模型的事件监测方法效率高但准确性低,基于神经网络、图像识别等机器学习的检测方法准确性高但效率低;多源数据融合、多项技术结合的交通事件检测方法成为实时检测方法的发展趋势。在此基础上,梳理了实时船舶航行交通事件检测的3项关键技术:①海事大数据技术:高效处理船舶运动数据和航行环境数据,统一多源异构数据结构标准,降低数据源单一造成的事件误报率;②船舶行为动态建模技术:利用知识图谱等技术融合船舶航行情境信息,在不同船舶运动环境下利用深度学习、语义关联、图神经网络等方法构建不同的船舶行为模型,提高检测准确性;③实时分析和可视化技术:结合平行系统进行虚实系统间信息传递,定性分析检测结果,实时显示检测全过程,提升监管过程中的人机交互效率。然后,提出了包括数据采集、后台服务和客户端应用3个功能模块的交通事件平行检测系统;该系统具备实时接收并处理船舶航行数据、分析并预测交通状态、动态检测并预警交通事件和仿真结果展示等功能。
出处 《交通信息与安全》 CSCD 北大核心 2022年第6期I0001-I0001,共1页 Journal of Transport Information and Safety
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部