期刊文献+

基于双线性融合的多模态细粒度情感分析

Multimodal Fine-grained Sentiment Analysis Based on Bilinear Fusion
下载PDF
导出
摘要 为充分挖掘多模态情感分析中不同模态内部消息及其复杂的交互关系,消除噪声干扰,最大化发挥数据融合的优势,提出一种基于双线性融合的多模态细粒度情感分析方法,通过两个独立的特征,提取模块对单个模态特征进行编码,充分挖掘模态内部信息,利用双线性融合方法获取模态间的交互信息,得到融合后的特征向量,通过Softmax层进行细粒度的情感分类。与单模态情感分析和一般的多模态情感分析相比,实验取得了很好的结果。 In order to fully explore the internal messages of different modes and the complex interaction relationships between them in multimodal sentiment analysis,eliminate noise interference,and maximize the advantages of data fusion,the study proposes a multimodal fine-grained sentiment analysis method based on bilinear fusion.This method first codes a single modal feature through two independent feature extraction modules to fully excavate the modal internal information.Then the interaction information between the modes is obtained by the bilinear fusion method to obtain the feature vector after fusion.Finally,fine-grained emotion classification is performed by the Softmax layer.Compared with singlemodal sentiment analysis and general multimodal sentiment analysis,the experiment has achieves good results.
作者 周倩倩 Zhou Qianqian(North China University of Water Resources and Electric Power,Zhengzhou 450000,China)
出处 《黑龙江科学》 2023年第4期26-29,37,共5页 Heilongjiang Science
关键词 BiLSTM AlexNet 双线性融合 注意力机制 BiLSTM AlexNet Bilinear fusion Attention mechanism
  • 相关文献

参考文献4

二级参考文献38

  • 1唐慧丰,谭松波,程学旗.基于监督学习的中文情感分类技术比较研究[J].中文信息学报,2007,21(6):88-94. 被引量:136
  • 2DING X, LIU T, DUAN J, et al. Mining user consumption intention from social media using domain adaptive convolutional neural network[C]//Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press, 2015: 2389-2395.
  • 3BOLLEN J, MAO H, ZENG X. Twitter mood predicts the stock market[J]. Journal of Computational Science, 2011, 2(1): 1-8.
  • 4ZHANG X, FUEHRES H, GLOOR P A. Predicting stock market indicators through Twitter "I hope it is not as bad as I fear"[J]. Procedia——Social and Behavioral Sciences, 2011, 26: 55-62.
  • 5YOU Q, LUO J, JIN H, et al. Robust image sentiment analysis using progressively trained and domain transferred deep networks [C/OL]//Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press, 2015: 381-388.
  • 6BORTH D, JI R, CHEN T, et al. Large-scale visual sentiment ontology and detectors using adjective noun pairs[C]//MM '13: Proceedings of the 21st ACM International Conference on Multimedia. New York: ACM, 2013: 223-232.
  • 7JIANG Y G, XU B, XUE X. Predicting emotions in user-generated videos[C]//Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press, 2014: 73-79.
  • 8TURNEY P D. Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews[C]//ACL '02: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2002: 417-424.
  • 9PANG B, LEE L, VAITHYANATHAN S. Thumbs up?: sentiment classification using machine learning techniques[C]//EMNLP '02: Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2002: 79-86.
  • 10YUAN J, MCDONOUGH S, YOU Q, et al. Sentribute: image sentiment analysis from a mid-level perspective[C]//WISDOM '13: Proceedings of the Second International Workshop on Issues of Sentiment Discovery and Opinion Mining. New York: ACM, 2013: 10.

共引文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部