期刊文献+

结合启发式与最优控制的舰载机甲板路径规划算法 被引量:4

Deck path planning algorithm of carrier-based aircraft based on heuristic and optimal control
下载PDF
导出
摘要 舰载机甲板调运是机群全周期出动回收作业的关键环节,为提高舰载机调运效率,以得到满足运动学及终端位姿约束的最优路径为目标,结合启发式与最优控制方法,进行舰载机甲板路径规划研究。首先,针对甲板复杂布列环境建立凸壳障碍膨胀模型。其次,在A*算法中引入动态衡量因子,设计轨迹重搜索算法,求解最短路径关键点。最后,解算关键点运动状态,结合最优控制算法,对关键点间分段路径进行规划与整合。开展典型甲板环境下的路径规划仿真实验,通过与最优控制算法仿真实验结果相比较,验证所提算法的优越性。仿真实验结果表明,所提算法有效解决了最优控制算法在复杂障碍环境下初值敏感性问题并有效提升了甲板调运的优化性能。 Carrier-based aircraft deck routing is a key step in the full-cycle dispatching and recovery operation of aircraft fleets.In order to improve the efficiency of carrier-based aircraft transfer,the optimal path satisfying the kinematic and terminal position constraints is obtained as the goal,and the heuristic and optimal control methods are combined to conduct the deck path planning research of carrier-based aircraft.Firstly,a convex hull obstacle expansion model is established for the complex deck layout environment.Secondly,a dynamic measurement factor is introduced into the A*algorithm and the trajectory re-search algorithm is designed to solve the shortest path key point.Finally,the motion state of the key point is solved and combined with the optimal control algorithm to plan and integrate the segmented paths between the key points.The simulation experiments of path planning under typical deck environment are carried out to verify the superiority of the proposed algorithm by comparing with the simulation results of the optimal control algorithm.The simulation experimental results show that the proposed algorithm effectively solves the problem of initial value sensitivity of the optimal control algorithm in the complex obstacle environment,and effectively improves the optimization performance of the deck transfer.
作者 韩维 刘子玄 苏析超 崔凯凯 刘洁 HAN Wei;LIU Zixuan;SU Xichao;CUI Kaikai;LIU Jie(Aviation Foundation College,Naval Aeronautical University,Yantai 264001,China;Unit 92942 of the PLA,Beijing 100161,China;War Research Institute,Academy of Military Science,Beijing 100850,China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2023年第4期1098-1110,共13页 Systems Engineering and Electronics
基金 国家自然科学基金(62003366)资助课题。
关键词 舰载机 飞行甲板 路径规划 A*算法 最优控制 carrier-based aircraft flight deck path planning A*algorithm optimal control
  • 相关文献

参考文献13

二级参考文献94

  • 1DUAN HaiBin 1 ,SHAO Shan 2 ,SU BingWei 3 &ZHANG Lei 41 State Key Laboratory of Science and Technology on Holistic Flight Control,School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics,Beijing 100191,China,2 Flight Control Department,Shenyang Aircraft Design and Research Institute,Shenyang 110035,China,3 Beijing Institute of Near Space Vehicle’s System Engineering,Beijing 100076,China,4Integration and Project Section,Air Force Equipment Academy,Beijing 100085,China.New development thoughts on the bio-inspired intelligence based control for unmanned combat aerial vehicle[J].Science China(Technological Sciences),2010,53(8):2025-2031. 被引量:34
  • 2宋建梅,李侃.基于A*算法的远程导弹三维航迹规划算法[J].北京理工大学学报,2007,27(7):613-617. 被引量:31
  • 3RYAN J C, CUMMINGS M L, ROY N, et al.Designing an interactive local and global decision support system for air- craft carrier deck scheduling [ C ]//AIAA. Cambridge Town, USA, 2011.
  • 4XING Jianjing. Behavior dynamics based motion planning of mobile robots in uncertain dynamic environments [ J ]. Ro- botics and Autonomous Systems, 2005, 53(2) : 99-123.
  • 5ROMERO R A F, PRESTES E, IDIART M A P. Locally ori- ented potential field for controlling multi-robots [ J]. Commun Nolinear Sci Numer Simulat, 2012,17(12) : 4664-4671.
  • 6TUNCER A, YILDIRIM M. Dynamic path planning of mo- bile robots with improved genetic algorithm [ J ]. Computers and Electrical Engineering, 2012, 38(6):1564-1572.
  • 7BINGUL Z, KARAHAN O. A fuzzy logic controller tuned with PSO for 2 DOF robot trajectory control[ J ]. Expert Sys- tems with Applications, 2011,38 ( 1 ) : 1017-1031.
  • 8JOHO D, SENK M, BURGARD W. Learning search heuris- tics for finding objects in structured environments [J]. Robotics and Autonomous Systems, 2011, 59(5) : 319-328.
  • 9ZHANG Yong, GONG Dunwei, ZHANG Jianhua. Robot path planning in uncertain environment using multi-objec- tive particle swarm optimization [ J]. Neuro Computing, 2013, 103(1) : 172-185.
  • 10SCHONER G, DOSE M, ENGELS C. Dynamics of behavior: theory and applications for autonomous robot architec- ture [J]. Robotics and Autonomous Systems, 1995, 16 (2/3/4) : 213-245.

共引文献132

同被引文献24

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部