期刊文献+

基于机器学习的间歇式电沉积制备W@Cu核-壳粉体模型的构建与应用 被引量:1

Construction and application of model of W@Cu core-shell powder prepared by intermittent electrodeposition technology based on machine learning
下载PDF
导出
摘要 W和Cu两相的均匀分布对获得高性能W-Cu复合材料至关重要。本文主要研究基于机器学习的间歇式电沉积制备W、Cu均匀分布的W@Cu粉体模型的构建与应用。首先,建立间歇式电沉积制备W@Cu核-壳粉体的机器学习模型,确定核-壳粉体理论镀层厚度与电流、电沉积时间、待镀粉体粒径和承载量之间的关联,然后在承载量为1000 g的装置中进行实验验证。将W@Cu核-壳粉体在1375℃下进行无压烧结,研究成形压力对W-Cu复合材料致密度、烧结收缩率和电导率的影响。结果表明,在电流密度为7 A/dm^(2)、电沉积时间为6 h时,实际镀层厚度为3.93μm,与理论镀层厚度3.15μm相符。提高成形压力有利于获得高致密度、低烧结收缩率的W-Cu复合材料。同时,核-壳粉体在显微组织中形成Cu的导电通道,有利于复合材料电导率的提升。 The uniform distribution of W and Cu phases is very important for obtaining high performance W-Cu composites.This paper mainly studies the construction and application of the model of W@Cu core-shell powder prepared by intermittent electrodeposition based on machine learning.Firstly,a machine learning model for the preparation of W@Cu core-shell powder by intermittent electrodeposition was established,and the relationships between the theoretical core-shell powder coating thickness and current,electrodeposition time,particle size of the powder to be plated,and the load capacity were determined.Further,the experimental verification was carried out in a device with a capacity of 1000 g.The W@Cu core-shell powders were sintered at 1375℃without pressure,and the effects of forming pressure on the density,sintering shrinkage,and electrical conductivity of W-Cu composite were investigated.The results show that the actual coating thickness is 3.93μm when the current density is 7 A/dm^(2)and the deposition time is 6 h,which is consistent with the theoretical coating thickness(3.15μm).Increasing the forming pressure is beneficial to obtain the compact W-Cu composites with low sintering shrinkage.At the same time,the core-shell powder formed a Cu conduction channel in the microstructure,which is conducive to improve the conductivity of the composite.
作者 邓楠 梁淑华 李建强 DENG Nan;LIANG Shuhua;LI Jianqiang(Shaanxi Province Key Laboratory of Electrical Materials and Infiltration Technology,School of Materials Science and Engineering,Xi’an University of Technology,Xi’an 710048,China;School of Materials Science and Engineering,Beijing University of Science and Technology,Beijing 100083,China;Ministry of Education Engineering Research Center of Conducting Materials and Composite Technology,Xi’an University of Technology,Xi’an 710048,China)
出处 《粉末冶金材料科学与工程》 2023年第1期20-27,共8页 Materials Science and Engineering of Powder Metallurgy
基金 国家自然科学基金资助项目(52204374,51972304,51971208) 陕西省重点研发项目(2019ZDLGY05-07) 陕西省教育厅科研项目(20JS094)。
关键词 W-CU复合材料 电沉积 核-壳粉体 机器学习 微观结构 W-Cu composite electrode position core-shell powder machine learning microstructure
  • 相关文献

参考文献3

二级参考文献32

  • 1周武平,吕大铭.钨铜材料应用和生产的发展现状[J].粉末冶金材料科学与工程,2005,10(1):21-25. 被引量:64
  • 2LIBinghu,KANGZhanying,CHENWenge,DINGBingjun.Preparation of nanosized W/Cu composite powder by sol-gel technique[J].Rare Metals,2005,24(2):170-173. 被引量:9
  • 3吕大铭,牟科强,唐安清,凌贤野.钨铜触头材料的热等静压处理[J].粉末冶金技术,1990,8(1):19-23. 被引量:7
  • 4熊湘君,刘盈霞.钨粉粒度对电极用钨铜合金组织和性能的影响[J].粉末冶金材料科学与工程,2007,12(2):101-105. 被引量:14
  • 5HONG S H, KIM B K. Fabrication of W-20wt% Cu composite nanopowder and sintered alloy with high thermal conductivity[J] International Journal of Refractory Metals & Hard Materials, 2003, 57(18): 2761-2767.
  • 6LI Y P, QU X H, ZHENG Z S, et al. Properties of W-Cu composite powder produced by a thermo-mechanical method[J]. International Journal of Refractory Metals & Hard Materials, 2003, 21(5/6): 259-264.
  • 7GERMAN R M, HENS K F, JOHNSON J L. Powder metallurgy processing of thermal management materials for microelectronic applications[J]. The International Journal of Powder Metallurgy, 1994, 30(2): 205-215.
  • 8SHI Xiaoliang, YANG Hua, WANG Sheng. Spark plasma sintering of W-15Cu alloy from ultrafine composite powder prepared by spray drying and calcining-continuous reduction technology[J]. Materials Characterization, 2009, 60(2): 133-137.
  • 9MA Douqin, XIE Jingpei, LIJiwen, et al. Synthesis and hydrogen reduction of nano-sized copper tungstate powders produced by a hydrothermal method[J]. International Journal of Refractory Metals & Hard Materials, 2014, 46: 152-158.
  • 10MOON I H. Sintering of mechanically alloyed nanostructured tungsten-copper alloys[J]. Metal Powder Report, 1998, 53(10): 38.

共引文献8

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部