期刊文献+

大数据和AI驱动的反欺诈模型体系建设实践

Big Data and Al-driven Anti-fraud Model System Construction Practice
下载PDF
导出
摘要 在数字化转型的大背景下,针对现阶段电信诈骗骚扰高发的态势,需要积极探索大数据与AI模型相结合的反欺诈数字化创新实践。通过聚焦和分析存量用户开卡、使用、换机等行为数据,构建用户特征画像、识别模型和检出规则,精准定位高风险用户并提前对其进行管控。 In the context of digital transformation,in view of the current high trend of telecom fraud and harassment among operators,we actively explore the practice of anti-fraud digital innovation combining hig data and AI model.By focusing on and analyzing the behavior data of the existing users,such as card opening,use and replacement of the machine,the user feature portrait,identification model and detection rules are constructed to accurately locate the high-risk users and control them in advance.
作者 张小晖 俞涛 郝洁 ZHANG Xiaohui;YU Tao;HAO Jie(China United Network Communications Co.,Ltd.,Hebei Branch,Shijiazhuang 050011,China)
出处 《移动信息》 2023年第3期131-133,共3页 MOBILE INFORMATION
关键词 数字化转型 大数据 AI模型 反欺诈 Digital transformation Big data AI model Anti-fraud
  • 相关文献

参考文献5

二级参考文献99

  • 1Labrinidis A, Jagadish H V. Challenges and Opportunities with Big Data. Proc of the VLDB Endowment, 2012, 5(12) : 2032-2033.
  • 2Bizer C, Boncz P, Brodie M L, et al. The Meaningful Use of Big Data : Four Perspectives-Four Challenges. ACM SIGMOD Record, 2012, 40(4) : 56-60.
  • 3Wang F Y. A Big-Data Perspective on AI: Newton, Merton, and An- alytics Intelligence. IEEE Intelligent Systems, 2012, 27 (5) : 2-4.
  • 4Simon H A. Why Should Machines Learn?//Michalski R S, Car- bonell J G, Mitchell T M, et al. , eds. Machine Learning: An Arti- ficial Intelligence Approach. Berlin, Germany: Springer, 1983: 25 -37.
  • 5Hart P. The Condensed Nearest Neighbor Rule. IEEE Trans on In- formation Theory, 1968, 14(3) : 515-516.
  • 6Gates G. The Reduced Nearest Neighbor Rule. IEEE Trans on In- formation Theory, 1972, 18(3) : 431-433.
  • 7Brighton H, Mellish C. Advances in Instance Selection for Instance- Based Learning Algorithms. Data Mining and Knowledge Discovery, 2002, 6(2) : 153-172.
  • 8Li Y H, Maguire L. Selecting Critical Patterns Based on Local Geo- metrical and Statistical Information. IEEE Trans on Pattern Analysis and Machine Intelligence, 2011, 33(6) : 1189-1201.
  • 9Angiulli F. Fast Nearest Neighbor Condensation for Large Data Sets Classification. IEEE Trans on Knowledge and Data Engineering, 2007, 19(11): 1450-1464.
  • 10Angiulli F, Folino G. Distributed Nearest Neighbor-Based Conden- sation of Very Large Data Sets. IEEE Trans on Knowledge and Da- ta Engineering, 2007, 19(12): 1593-1606.

共引文献349

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部