期刊文献+

基于改进型遗传算法的强化学习特征选择方法

下载PDF
导出
摘要 本文针对强化学习的特征选择过程中存在的组合爆炸问题,提出了基于改进型遗传算法的特征选择方法,并以自回避行走问题中的寻路任务进行有效性验证。首先针对自回避行走任务环境设计了17种独立特征,而后设计了渐进式的遗传算法并改进了适应度函数,最后进行了对比实验。实验结果表明,该方法在不降低算法性能的条件下,特征数量减少了70.59%,适应度提高了23.98%,是一种行之有效的特征选择方法。
出处 《电子技术与软件工程》 2022年第24期191-195,共5页 ELECTRONIC TECHNOLOGY & SOFTWARE ENGINEERING
  • 相关文献

参考文献10

二级参考文献87

  • 1崔文岩,孟相如,李纪真,王明鸣,陈天平,王坤.基于粗糙集粒子群支持向量机的特征选择方法[J].微电子学与计算机,2015,32(1):120-123. 被引量:9
  • 2Li G-Z, Yang J Y. Feature selection for ensemble learning and its application[M]. Machine Learning in Bioinformatics, 2008: 135-155.
  • 3Sheinvald J, Byron Dom, Wayne Niblack. A modelling approach to feature selection[J]. Proc of 10th Int Conf on Pattern Recognition, 1990, 6(1): 535-539.
  • 4Cardie C. Using decision trees to improve case-based learning[C]. Proc of 10th Int Conf on Machine Learning. Amherst, 1993: 25-32.
  • 5Modrzejewski M. Feature selection using rough sets theory[C]. Proc of the European Conf on Machine ,Learning. 1993: 213-226.
  • 6Ding C, Peng H. Minimum redundancy feature selection from microarray gene expression data[J]. J of Bioinformatics and Computational Biology, 2005, 3(2): 185-205.
  • 7Francois Fleuret. Fast binary feature selection with conditional mutual information[J]. J of Machine Learning Research, 2004, 5(10): 1531-1555.
  • 8Kwak N, Choi C-H. Input feature selection by mutual information based on Parzen window[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(12): 1667-1671.
  • 9Novovicova J, Petr S, Michal H, et al. Conditional mutual information based feature selection for classification task[C]. Proc of the 12th Iberoamericann Congress on Pattern Recognition. Valparaiso, 2007: 417-426.
  • 10Qu G, Hariri S, Yousif M. A new dependency and correlation analysis for features[J]. IEEE Trans on Knowledge and Data Engineering, 2005, 17(9): 1199- 1207.

共引文献293

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部