期刊文献+

基于一个发现污染类核心区域的聚类模型的大气污染情况分析 被引量:1

ANALYSIS OF AIR POLLUTION BASED ON A CLUSTERING MODEL FOR DISCOVERING THE BACKBONE OF POLLUTION CLUSTER
原文传递
导出
摘要 由于污染源受地形、地貌及气象等条件影响而分布多样,大气污染数据在空间中呈任意形状、任意密度的复杂分布。为探究这种大气污染分布状况,基于DP算法提出了1个发现污染类核心区域的聚类模型。以实现对污染数据不经统计直接聚类,在保持空气污染数据分布特征不变的基础上提取出关键污染数据,更准确地挖掘空气污染变化规律。将所提聚类模型和k-Means算法在由兰州市2017,2019,2021年各年1月污染物浓度小时数据构成的3个数据集上进行了对比分析。结果显示:所提模型在以上3个数据集上均能更清晰地挖掘出污染数据,在污染类核心区域中的关键污染数据分别为59.0%、57.2%和69.0%,且造成污染的首要污染物均为NO2和颗粒物。此外,该模型从兰州市2021年1月数据中解析出,兰州市月污染变化由污染物NO2和PM10共同作用或交替作用引起,日污染变化在受污染小时数和首要污染物(NO2和PM10)出现次数上的变化趋势均呈双峰型,污染区域为城关区。并通过分析上述污染规律的成因,证明该模型在确保数据复杂分布不变的情况下提取关键污染数据的有效性。 Since the distribution of air pollution sources is influenced by topography, landform and meteorology, the distribution of air pollution data in space is of arbitrary shapes and densities. To more accurately mine the rule of air pollution, this paper proposed a clustering model based on the DP algorithm for discovering the backbones of the cluster. The model could directly group pollution data without statistical analysis and extract key information from air pollution data by keeping the distribution unchanged, so as to excavate the change law of air pollution more accurately. The proposed clustering model and the k-Means algorithm were compared and analyzed on the three hourly pollutant concentration datasets monitored in January of 2017, 2019 and 2021 in Lanzhou respectively. In these three datasets, our model could more clearly mine the pollution data. The key pollution data accounted for 59.0%, 57.2% and 69.0% respectively in the backbones of pollution cluster, and the primary pollutants causing pollution were NO2and particulate matter. To reflect the applicability of the model, we analyzed our model on the pollution data in Lanzhou in January 2021, then found that the variation of air pollution in that month was caused by the joint or alternate action of pollutants NO2and PM10, the hourly variation trend of pollution showed a bimodal pattern both on the number of contaminated hours and the occurrence frequency of primary pollutants(NO2and PM10), and Chengguan District was the polluted area. The validity of the model was tested using the causes analysis of the above pollution laws, which made the model practical and effective for extracting key air pollution data without changing its complex distribution.
作者 谢越 陈梅 王有帅 XIE Yue;CHEN Mei;WANG Youshuai(School of Electronics and Information Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China)
出处 《环境工程》 CAS CSCD 北大核心 2022年第12期142-150,179,共10页 Environmental Engineering
基金 甘肃省重点研发计划(21YF5GA053) 甘肃省高等学校产业支撑计划项目(2022CYZC-36) 国家自然科学基金项目(61762057)。
关键词 空气污染 聚类模型 空间分布 簇核心区域 air pollution clustering model spatial distribution backbone of cluster
  • 相关文献

参考文献13

二级参考文献150

共引文献319

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部