期刊文献+

量子自旋霍尔绝缘体Bi_(4)Br_(4)体与边缘的可区分的光学性质研究

Optical bulk-boundary dichotomy in a quantum spin Hall insulator
原文传递
导出
摘要 量子自旋霍尔绝缘体拥有具有带隙的体态和无能隙的一维拓扑边缘态.然而,由于拓扑边缘态局域在纳米尺度,所以很难用光学手段直接观测并区分体态和边缘态,这就限制了对拓扑边缘态独特的光学特性和光电响应等方面的研究和应用.Bi_(4)Br_(4)体材料的台阶存在一维非平庸的边缘态,多个台阶累加的效应使得通过较为宏观的光学和光电分析手段来研究一维边缘态成为可能.该工作利用中远红外显微吸收光谱和泵浦探测光谱,对比研究了Bi_(4)Br_(4)体和边缘的光学响应行为.研究发现Bi_(4)Br_(4)的边缘在小于带隙(约0.22 eV)的波段存在明显的强于体内的红外吸收,且该吸收呈现较强的各向异性.室温下的红外泵浦探测首次观察到边缘处载流子激发态超长的弛豫时间(1.5 ns),该激发态载流子寿命要比体内载流子寿命长两个量级.该工作证实体态和拓扑边缘态具有明显不同的光学和光电响应行为,为未来设计新型红外探测器提供了材料和物理基础. The bulk-boundary correspondence is a critical concept in topological quantum materials.For instance,a quantum spin Hall insulator features a bulk insulating gap with gapless helical boundary states protected by the underlying Z_(2) topology.However,the bulk-boundary dichotomy and distinction are rarely explored in optical experiments,which can provide unique information about topological charge carriers beyond transport and electronic spectroscopy techniques.Here,we utilize mid-infrared absorption micro-spectroscopy and pump–probe micro-spectroscopy to elucidate the bulk-boundary optical responses of Bi_(4)Br_(4),a recently discovered room-temperature quantum spin Hall insulator.Benefiting from the low energy of infrared photons and the high spatial resolution,we unambiguously resolve a strong absorption from the boundary states while the bulk absorption is suppressed by its insulating gap.Moreover,the boundary absorption exhibits strong polarization anisotropy,consistent with the one-dimensional nature of the topological boundary states.Our infrared pump–probe microscopy further measures a substantially increased carrier lifetime for the boundary states,which reaches one nanosecond scale.The nanosecond lifetime is about one to two orders longer than that of most topological materials and can be attributed to the linear dispersion nature of the helical boundary states.Our findings demonstrate the optical bulk-boundary dichotomy in a topological material and provide a proof-ofprincipal methodology for studying topological optoelectronics.
作者 韩俊峰 毛鹏程 陈海龙 殷嘉鑫 王茂原 陈东云 李永恺 郑靖川 张旭 马大帅 马琼 余智明 周金健 刘铖铖 王业亮 贾爽 翁羽翔 M.Zahid Hasan 肖文德 姚裕贵 Junfeng Han;Pengcheng Mao;Hailong Chen;Jia-Xin Yin;Maoyuan Wang;Dongyun Chen;Yongkai Li;Jingchuan Zheng;Xu Zhang;Dashuai Ma;Qiong Ma;Zhi-Ming Yu;Jinjian Zhou;Cheng-Cheng Liu;Yeliang Wang;Shuang Jia;Yuxiang Weng;MZahid Hasan;Wende Xiao;Yugui Yao(Centre for Quantum Physics,Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement(Ministry of Education),School of Physics,Beijing Institute of Technology,Beijing 100081,China;Yangtze Delta Region Academy of Beijing Institute of Technology,Jiaxing 314000,China;Beijing Key Laboratory of Nanophotonics&Ultrafine Optoelectronic Systems,Beijing Institute of Technology,Beijing 100081,China;Analysis&Testing Center,Beijing Institute of Technology,Beijing 100081,China;Beijing National Laboratory for Condensed Matter Physics and Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China;Songshan Lake Materials Laboratory,Dongguan 523808,China;School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100190,China;Laboratory for Topological Quantum Matter and Advanced Spectroscopy(B7),Department of Physics,Princeton University,Princeton NJ 08544,USA;Department of Physics,Xiamen University,Xiamen 361005,China;Department of Physics,Boston College,Chestnut Hill MA 02467,USA;School of Integrated Circuits and Electronics,MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices,Beijing Institute of Technology,Beijing 100081,China;International Center for Quantum Materials,School of Physics,Peking University,Beijing 100871,China;Department of Physics,Chongqing University,Chongqing 400044,China)
出处 《Science Bulletin》 SCIE EI CAS CSCD 2023年第4期417-423,M0004,共8页 科学通报(英文版)
基金 supported by the National Natural Science Foundation of China(11734003,62275016,12274029,and 92163206) the National Key Research and Development Program of China(2020YFA0308800) Beijing Natural Science Foundation(Z210006 and Z190006) the Strategic Priority Research Program of Chinese Academy of Sciences(XDB30000000)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部