期刊文献+

基于SVR-LSTM-BP的分布式光伏短期出力预测方法研究 被引量:4

A research on short-term distributed photovoltaic power prediction model based on SVR-LSTM-BP
下载PDF
导出
摘要 提出一种分布式光伏短期出力组合预测方法,以BP神经网络耦合支持向量回归(Support Vector Regression,SVR)和长短期记忆(Long Short-Term Memory,LSTM)神经网络实现组合预测。首先分别构建两个单一模型:以高斯径向基函数为核函数的支持向量回归模型和三层长短期记忆神经网络,并分别预测,再通过三层BP神经网络将前两个单一模型的预测结果耦合并输出,以提高预测的准确度。利用江苏某光伏发电装置采集的真实数据进行仿真验证,得出结论:SVR-LSTM-BP模型的准确度与SVR模型相比有显著提高,而与LSTM模型接近,稳定性则比LSTM模型有一定提高。 A new combined prediction model for short-term distributed photovoltaic output is proposed,using support vector regression(SVR),long short-term memory neural network(LSTM)and backpropagation neural network(BP).Two simple models using SVR with Gaussian radial basis function and 3-layer LSTM are constructed,respectively.Then,to increase the prediction accuracy,the outputs of the two simple models are combined by a 3-layer BP neural network.Numerical experiments based on the real data of a photovoltaic power station in Jiangsu Province shows that the SVR-LSTM-BP model has a significantly improved prediction accuracy than that of the SVR model,which is close to that of the LSTM model.The stability of the SVR-LSTM-BP model is slightly improved than that of the LSTM model.
作者 李俊伟 龚新勇 朱元富 辛平安 LI Junwei;GONG Xinyong;ZHU Yuanfu;XIN Pingan(Kunming Power Supply Bureau of Yunnan Power Grid Co.,Ltd.,Kunming 650200,China)
出处 《电气应用》 2023年第2期79-84,共6页 Electrotechnical Application
关键词 分布式光伏发电 光伏出力预测模型 支持向量回归 长短期记忆神经网络 BP神经网络 distributed photovoltaic power generation photovoltaic output prediction model support vector regression long short-term memory neural network backpropagation neural network
  • 相关文献

参考文献6

二级参考文献54

  • 1董雷,周文萍,张沛,刘广一,李伟迪.基于动态贝叶斯网络的光伏发电短期概率预测[J].中国电机工程学报,2013,33(S1):38-45. 被引量:77
  • 2丁恰,张辉,张君毅.考虑气象信息的节假日负荷预测[J].电力系统自动化,2005,29(17):93-97. 被引量:34
  • 3栗然,刘宇,黎静华,顾雪平,牛东晓,刘永奇.基于改进决策树算法的日特征负荷预测研究[J].中国电机工程学报,2005,25(23):36-41. 被引量:30
  • 4刘玲,严登俊,龚灯才,张红梅,李大鹏.基于粒子群模糊神经网络的短期电力负荷预测[J].电力系统及其自动化学报,2006,18(3):47-50. 被引量:27
  • 5张素宁,田胜元.太阳辐射逐时模型的建立[J].太阳能学报,1997,18(3):273-277. 被引量:56
  • 6ENRIQUE Romero-Cadaval, MARIA Isabel Milan6s-Monte- to, EVA Gonztlez-Romera, et al. Power injection system for grid-connected photovoltaic generation systems based on two collaborative voltage source inverters [ J ]. Industrial Electron- ics,lEEE Transactions on,2009,56( 11 ) :4 389-4 398.
  • 7ZENG Jianwu, QIAO Wei. Short-term solar power prediction using a support vector nachine [ J ]. Renewable Energy, 2013,52( 1 ) :118-127.
  • 8LORENZ Elke, HURKA Johannes, HINEMANN Deflev, et al. Irradiance forecasting for the power prediction of grid-con- nected photovoltaic systems [ J ]. Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, 2009,2( 1 ) :2-10.
  • 9IZGI Ercan, ZTOPAL Ahmet, YERLI Bihter, et al. Short- mid-term solar power prediction by using artificial neural net- works [J]. Solar Energy,2012,86(2) :725-733.
  • 10BACHER Peder, MADSEN Henrik, NIELSEN Henrik Aal- borg. Online short-term solar power forecasting [ J ]. Solar Energy ,2009,83 ( 10 ) : 1 772-1 783.

共引文献69

同被引文献51

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部