期刊文献+

缝道闭合门对多段翼型气动特性的影响研究

Influence of Slot Closure Door on Aerodynamic Characteristics of Multi-element Airfoil
下载PDF
导出
摘要 增升装置是飞机的重要部件,多段翼型则是增升装置的设计基础。为了改善多段翼型固定翼后缘处襟翼舱的分离,提升多段翼型的升阻特性,在固定翼后缘下壁面增加缝道闭合门装置,并对缝道闭合门及其偏转角度、转轴位置对多段翼型气动特性的影响进行了数值模拟研究。计算结果表明,小迎角范围内,在固定翼后缘下壁面增加缝道闭合门后,能够减少固定翼后缘襟翼舱的气流分离,最多可为多段翼型的升阻比带来1.9%的提升。多段翼型升阻比随缝道闭合门偏转角度、缝道闭合门转轴至襟翼前缘距离的增加呈先上升后下降的趋势。与无缝道闭合门构型相比,偏转角度为15°时,最多可为多段翼型升阻比带来4.9%的提升;转轴距襟翼前缘距离占弦长6%时,最多可为多段翼型升阻比带来7.4%的提升。 The high-lift device is an important component for airplanes,while the multi-element airfoil is the design basis of it.To reduce the flow separation on the flap cabin at the trailing edge of the fixed-wing and enhance the lift-drag characteristics of the multi-element airfoil,a slot closure door was added on the lower surface of the fixedwing’s trailing edge.The influence on aerodynamic characteristics of the multi-element airfoil from the slot closure door,deflection angle and position of the rotating shaft was studied by numerical simulation.The results show that,within the range of a low angle of attack,adding a slot closure door can reduce flow separation on the flap cabin and increase the lift-drag ratio of the multi-element airfoil by up to 1.9%.The lift-drag ratio of the multi-element airfoil will first rise and then fall with the increase of the deflection angle of the slot closure door and the distance from the shaft of the slot closure door to the leading edge of the flap.Compared with the slotless closed door configuration,the lift-drag ratio of the multi-element airfoil can be improved by up to 4.9%at 15°deflection angle,and up to 7.4%when the distance between the rotating shaft and the leading edge of the flap accounts for the chord length is 6%.
作者 孔凡 蔡锦阳 KONG Fan;CAI Jin-yang(Shanghai Aircraft Design and Research Institute,Shanghai 201210,China)
出处 《计算机仿真》 北大核心 2023年第2期24-27,107,共5页 Computer Simulation
关键词 多段翼型 缝道闭合门 数值模拟 升阻比 Multi-element airfoil Slot closure door Numerical simulation Lift-drag ratio
  • 相关文献

参考文献3

二级参考文献16

  • 1朱自强,陈迎春,吴宗成,陈泽民.高升力系统外形的数值模拟计算[J].航空学报,2005,26(3):257-262. 被引量:48
  • 2Meredith P T. Viscous phenomena affecting high lift systems and suggestions for future CFD development [ C]//AGARD CP 315. London : [ s. n. ], 1993 : 19-1 - 19-8.
  • 3Smith A M O. High lift aerodynamics [ J ]. Journal of Aircraft, 1975,12 (6): 501 -530.
  • 4Thomas F O, Nelson R C, Liu X. Experimental investigation of the confluent boundary layer of a high-lift system [ J ]. AIAA Journal, 2000,38 ( 6 ) : 978 - 988.
  • 5Balaji R,Bramkamp F, Hesse M. Effect of flap and slat riggings on 2-D high-lift aerodynamics [ J ]. Journal of Aircraft, 2006,43 (5) :1259 - 1271.
  • 6Rumsey C L,Ying S X. Prediction of high lift : review of present CFD capability [ J ]. Progress in Aerospace Science, 2002,38 (2) :145 - 180.
  • 7Spalart P R,Allmaras S R. A one-equation turbulence transport model for aerodynamic Flows[ R]. AIAA 92-0439,1992.
  • 8Chin V, Peters D W, Spaid F W, et al. Flowfield measurements a- bout a multi-element airfoil at high reynolds Numbers [ R ]. AIAA 93-3137,1993.
  • 9Moitra A. Issues in 2-D High.Hfl CFD Analysis: A Review [ R]. AIAA, 2003:2003 -4072.
  • 10Smith A M O. High-lift aerodynamics [ J ]. Journal of Aircraft, 1975,12(6) :501 -530.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部