期刊文献+

风电塔筒用钢板探伤不合格原因分析与改进

Causes Analysis and Improvement of Disqualified Steel Plate for Wind Power Tower in Flaw Detection
下载PDF
导出
摘要 运用酸蚀低倍检验、光学及电子显微分析技术,对某钢厂S355J2+N风电塔筒用钢板探伤不合格原因进行定性分析,并对其影响因素展开讨论。结果表明:钢板心部的微裂纹是此次探伤不合格的主要原因。裂纹的产生,一方面是偏析导致组织应力和轧后冷却过程中形成热应力的共同作用,另一方面是MnS夹杂物偏聚使钢基体界面结合较弱,促进了裂纹的萌生和扩展。通过将钢中硫含量控制在0.003%以内、控制连铸钢水过热度≤20℃、定期和不定期对连铸机扇形段辊缝进行检测、扇形段弧度进行校验以及钢板下线后及时堆垛缓冷等一系列措施,探伤合格率得到有效提升。 By means of acid eching macroexamination,optical and electron microscopic analysis technologies,qualitative analysis is performed on the causes of flaw detection disqualification of S355J2+N steel plate for wind power tower cylinder in a steel plant,the influencing factors of disqualification are also discussed.The results show that the microcrack at the plate center is the major cause of flaw detection disqualification.The crack formation is caused on one hand by the action of structural stress due to segregation and thermal stress during cooling after rolling,on the other hand by crack initiation and propagation due to the poor steel matrix interface binding led by MnS inclusion accumulation.The flaw detection qualification rate is effectively improved by measures of controlling C content in the steel within 0.003% and the superheat of molten steel for continuous casting≤20℃,regularly and irregularly monitoring the roll gap of the caster’s segment,calibrating the segment radian,timely cooling in pile after the steel plate is offline.
作者 张奇毅 陈海燕 宋延成 徐国龙 白云 Zhang Qiyi;Chen Haiyan;Song Yancheng;Xu Guolong;Bai Yun(Jiangyin Xingcheng Special Steel Works Co.,Ltd.)
出处 《宽厚板》 2023年第1期14-16,44,共4页 Wide and Heavy Plate
关键词 风电塔筒用钢 探伤 偏析 缓冷 Steel for wind power tower cylinder Flaw detection Segregation Slow cooling
  • 相关文献

参考文献4

二级参考文献17

  • 1[1]Kelly J E, Michalek K P. Initial Development of Thermal and Stress Fields in Continuously Cast Steel Billets.Metallurgical Transaction A, 1988, 10(9): 2589~2602.
  • 2[2]Gladman T. Developments in Inclusions Control and Their Effects on Steel Properties. Ironmaking and Steelmaking, 1992, 19(6): 453~457.
  • 3王新华.钢铁冶金[M].北京:高等教育出版社,2007.216.
  • 4Narasaiah N, Ray K K. Small Crack Formation in Low Carbon Steel With Banded Ferrite-Pearlite Structure [J]. Materials Science : Engineering A, 2005,392 (1-2) : 269.
  • 5Byoungchul Hwang, Han Sang Lee, Yang Gon Kim. Analysis and Prevention of Side Cracking Phenomenon Occurring During Hot Rolling of Thick Low-Carbon Steel Plates[J]. Materials Science & Engineering A, 2005,402 : 177.
  • 6DeArdo A J. An Investigation of the Mechanism of Splitting Which Occurs in Tensile Specimens of High Strength Low Alloy Steels[J]. Metallurgical Transactions A, 1977,8(3):473.
  • 7王祖滨 东涛.低合金高强度钢[M].北京:原子能出版社,1996.196-214.
  • 8上田修三.结构钢的焊接-低合金钢的性能及冶金学[M].陈祝年译.北京:冶金工业出版社,2004:127—128.
  • 9杨才福,张永权.第三代TMCP技术在中厚板产品中的应用[A].中国金属学会低合金钢学术委员会.2003年全国中厚钢板技术交流会论文集[C].北京:中国金属学会低合金钢学术委员会,2003.32-38.
  • 10HE Xin-lai,SHANG Cheng-jia,HOU Hua-xin,et al.The Development of 600 MPa~800 MPa Grade High Strength Low Carbon Bainite Steel[A].The Chinese Society for Metals.HSLA Steels 2005[C].Sanya,China:The Chinese Society for Metals,2005.98-104.

共引文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部