期刊文献+

具有阶段结构的时滞周期SEIR传染病模型动力学分析 被引量:2

Dynamics of a Time-delay Periodic SEIR Infectious Disease Model with Stage-structure
下载PDF
导出
摘要 研究了一类具有阶段结构的时滞周期传染病模型。首先导出数学模型,然后利用次代算子方法计算基本再生数R_(0),并利用持久性理论和比较原理证明疾病灭绝和一致持久的阈值条件,最后通过数值模拟进一步验证结论,并讨论忽略时滞因素对估计传染病传播的影响。 A time-delay periodic infectious disease model with stage structure is studied.Firstly,the mathematical model is derived.Next,the basic regeneration number R_(0) is derived by the second generation operator method.The persistence theory and comparison principle are used to prove the threshold conditions for disease extinction and consistent persistence.Finally,the conclusions are further verified by numerical simulation,and the influence of ignoring time delay factors on the estimation of infectious disease transmission is discussed.
作者 纳仁花 梁泽芬 NA Renhua;LIANG Zefen(Department of Basic Courses,Lanzhou Institute of Technology,Lanzhou 730050,China;School of Mechanical and Electrical Engineering,Lanzhou Institute of Technology,Lanzhou 730050,China)
出处 《兰州工业学院学报》 2023年第1期95-101,106,共8页 Journal of Lanzhou Institute of Technology
基金 甘肃省高等学校创新能力提升项目(2020B-244) 甘肃省高校科研项目(2020A-145) 甘肃省自然科学基金(20JR10RA278)。
关键词 时滞 周期 阶段结构 基本再生数 持久性 delay periodic stage-structure basic regeneration number persistence
  • 相关文献

参考文献5

二级参考文献25

  • 1XIAOYanni,CHENLansun.ON AN SIS EPIDEMIC MODEL WITH STAGE STRUCTURE[J].Journal of Systems Science & Complexity,2003,16(2):275-288. 被引量:8
  • 2胡宝安,陈博文,原存德.具有阶段结构的SIS传染病模型[J].生物数学学报,2005,20(1):58-64. 被引量:20
  • 3陈军杰.若干具有非线性传染力的传染病模型的稳定性分析[J].生物数学学报,2005,20(3):286-296. 被引量:26
  • 4张彤,方道元.一类潜伏期和染病期均传染且具非线性传染率的流行病模型[J].生物数学学报,2006,21(3):345-350. 被引量:8
  • 5Anderson R M, May R M. Infectious Diseases of Humans: Dynamics and Control[M]. New York: Oxford University Press, 1992.
  • 6Hethcote H W. Three Basic Epidemiological Models, in Applied Mathematical Ecology, L. Gross, T. G. Hallam, and S. A. Levin, eds[M]. Berlin: Springer-Verlag, 1989, 119-144.
  • 7London W, Yorke J. Recurrent outbreaks of measles, chickenpox and mumps. Part 1. Seasonal variation in contetct rates[J]. American Journal of Epidemiology, 1973, 98(6):453-468.
  • 8Pourabbas E, d'Onofrio A, Rafanelli M. A method to estimate the incidence of communicable diseases under seasonal fluctuations with application to cholera[J]. Applied Mathematics and Computation, 2001, 118(2):161- 174.
  • 9Smith H L. Subharmonic bifurcation in a S-I-R epidemic model[J]. Journal of Mathematical Biology, 1983, 17(2):163-177.
  • 10Duncan C J, Duncan S R, Scott S. Oscillatory dynamics of small-pox and the impact of vaccination[J]. Jounal Mathematical Biology, 1996, 183(4):447-454.

共引文献22

同被引文献8

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部