期刊文献+

一类非凸优化问题的邻近拟牛顿方法的复杂性

Complexity on Proximal Quasi-Newton Methods for a Class of Nonconvex Composite Optimization
下载PDF
导出
摘要 This paper studies a class of nonconvex composite optimization, whose objective is a summation of an average of nonconvex(weakly) smooth functions and a convex nonsmooth function, where the gradient of the former function has the H o¨lder continuity. By exploring the structure of such kind of problems, we first propose a proximal(quasi-)Newton algorithm wPQN(Proximal quasi-Newton algorithm for weakly smooth optimization) and investigate its theoretical complexities to find an approximate solution. Then we propose a stochastic variant algorithm wPSQN(Proximal stochastic quasi-Newton algorithm for weakly smooth optimization), which allows a random subset of component functions to be used at each iteration. Moreover, motivated by recent success of variance reduction techniques, we propose two variance reduced algorithms,wPSQN-SVRG and wPSQN-SARAH, and investigate their computational complexity separately.
作者 金玲子 JIN Ling-Zi(School of Mathematical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China;Peng Cheng Laboratory,Shenzhen 518066,China)
出处 《Chinese Quarterly Journal of Mathematics》 2023年第1期62-84,共23页 数学季刊(英文版)
基金 Supported by National Natural Science Foundation of China(Grant No.11871453) The Major Key Project of PCL(Grant No.PCL2022A05).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部